2010

Katarzyna Strzelecka, Krystyna Jeżowiecka-Kabsch

Rzeczywiste wartości współczynnika strat miejscowych podczas przepływu wody przez nagłe zwężenie rury

Podobnie jak w przypadku przepływu wody przez nagłe (skokowe) osiowosymetryczne rozszerzenie przewodu [1], również podczas przepływu przez nagłe zwężenie struga ulega destabilizacji, która jest tym silniejsza, im większy skok średnicy rury. Ze stopniem zwężenia wiąże się zatem odległość, w której struga odzyskuje stabilność po pokonaniu tego rodzaju oporu.

Struga wody wpływając do przewodu o mniejszej średnicy ulega dodatkowemu przewężeniu (kontrakcji), po czym rozszerza się i wypełnia cały jego przekrój (rys. 1).

Rys. 1. Schemat przepływu wody w otoczeniu nagłego zwężenia rury Fig. 1. Water flow in the vicinity of pipe sudden contraction

W tym przypadku strefy z ujemnymi wartościami prędkości są obserwowane zarówno przed (mówi się zatem o wstecznym działaniu oporu), jak i za oporem miejscowym. Podobnie jak w przypadku nagłego rozszerzenia, zarówno kształt, jak i zasięg stref przepływów powrotnych zależą od skoku średnicy (d/D – stosunku średnicy rury za i przed zwężeniem) oraz od liczby Reynoldsa (w odniesieniu do średnicy d obliczonej z zależności Re_d=4q_v/(π dv), w której q_V – strumień objętości, m³/s; v – kinematyczny współczynnik lepkości, m²/s).

Struktura przepływu wody w otoczeniu nagłych zwężeń rur, zjawiska zachodzące na granicy strugi tranzytowej, deformacja profili prędkości oraz kształt i zasięg stref przepływów powrotnych, omówione dokładnie w pracy [2], stanowią źródło strat miejscowych powstających podczas przepływu przez takie opory. W praktyce wyznaczenie tych strat opiera się na doborze współczynnika strat miejscowych (ζ) jedynie na podstawie geometrii oporu [3–10].

Metoda wyznaczenia rzeczywistych wartości współczynnika strat miejscowych (ζ)

Prezentowane w literaturze wzory, wg których obliczane są wartości współczynnika strat miejscowych [6,10], nie uwzględniają ani zaburzeń przepływu w bezpośrednim sąsiedztwie nagłego zwężenia rury, ani wpływu liczby Reynoldsa na zjawiska przebiegające w tych obszarach. Wysokość strat miejscowych (Δh^{sm}), wywołanych skokowym zwężeniem rury, odniesioną do prędkości średniej w rurze o mniejszej średnicy (d), można określić ze wzoru Darcy-Weisbacha [6] zapisanego w postaci:

$$\Delta h^{\rm sm} = \frac{\Delta p}{\rho g} = \zeta \frac{\overline{U}_{\rm d}^2}{2g} = \frac{\zeta}{2g} \left(\frac{4q_{\rm V}}{\pi d^2}\right)^2 \tag{1}$$

w którym:

 ζ – współczynnik strat miejscowych, charakteryzujący w tym przypadku nagłe zwężenie rury

 \overline{U}_d – uśredniona w czasie (średnioczasowa) prędkość średnia w rurze o średnicy d, m/s

W hydraulicznych obliczeniach rurociągów najczęściej zalecane jest [np. 5–7] określenie wartości współczynnika ζ z zależności:

$$\zeta = 0.5 \left(1 - \left(\frac{d}{D} \right)^2 \right)$$
 (2)

w której:

d – średnica rury za zwężeniem, m

D - średnica rury przed zwężeniem, m

Wyznaczone w ten sposób wartości współczynnika strat miejscowych (w odniesieniu do prędkości \overline{U}_d) są najczęściej stosowane w obliczeniach inżynierskich.

Złożony charakter przepływu wody w otoczeniu nagłego zwężenia rury wiąże się z koniecznością doświadczalnego wyznaczenia rzeczywistych wartości współczynnika strat miejscowych oraz określenia ich zależności od hydrodynamicznych warunków przepływu, scharakteryzowanych liczbą Reynoldsa. Z uogólnionego równania Bernoulliego [6], stosując metodę kompensacyjną [9,11] w odniesieniu do nagłego zwężenia, otrzymuje się równanie (3), określające współczynnik strat miejscowych (w odniesieniu do prędkości średniej \overline{U}_d) w postaci:

$$\zeta = \alpha_{\rm D} \frac{d^4}{D^4} - \alpha_{\rm d} - \frac{g\pi^2 d^4}{8q_{\rm V}^2} \left(\Delta z_{1,2} - 2\Delta z_{3,4} \right)$$
(3)

w której:

 $\Delta z_{1,2}$, $\Delta z_{3,4}$ – wysokość różnicy ciśnień między przekrojami pomiarowymi 1 i 2 oraz 3 i 4 ([12], rys. 2)

 α_d , α_D – współczynnik Coriolisa w odniesieniu do przekroju za i przed zwężeniem (wyznaczony odpowiednio przy Re_d i Re_D).

Wyznaczony tak współczynnik ζ charakteryzuje jedynie straty miejscowe, a obliczając jego wartość należy uwzględnić rozkład prędkości w przekroju poprzecznym strugi zarówno w rurze o średnicy D, jak i d. Są one scharakteryzowane współczynnikiem Coriolisa określającym nierównomierność rozkładu prędkości w przekroju poprzecznym rury [6].

Dr inż. K. Strzelecka, prof. dr hab. inż. K. Jeżowiecka-Kabsch: Politechnika Wrocławska, Wydział Mechaniczno-Energetyczny, Wybrzeże S. Wyspiańskiego 27, 50–370 Wrocław, katarzyna.strzelecka@pwr.wroc.pl, krystyna.jezowiecka-kabsch@pwr.wroc.pl

W literaturze [6,13] i w normach [14] można znaleźć różne założenia dotyczące określania wartości współczynników Coriolisa w uformowanym przepływie. W przypadku przepływów turbulentnych najczęściej spotyka się założenie równomiernego rozkładu prędkości w każdym przekroju, a zatem $\alpha_d=\alpha_D=1$. Wyniki badań dotyczących wartości współczynnika ζ podczas przepływu wody przez nagłe zwężenie rury przy takim właśnie założeniu przedstawiono w pracy [15].

Założenie $\alpha_d = \alpha_D = 1$ można uznać za dokładne wówczas, gdy liczba Reynoldsa ma bardzo dużą wartość i profil prędkości jest w przybliżeniu równomierny ($\alpha \approx 1$), lecz przy wartościach Re do kilkuset tysięcy profil ten wyraźnie różni się od równomiernego, a więc założenie to nie jest poprawne. Wyznaczenie rzeczywistych wartości współczynnika strat miejscowych wymaga więc znajomości bezpośredniej zależności wartości współczynnika Coriolisa (α) od liczby Reynoldsa. Badania doświadczalne przedstawione w pracach [12, 16] przy liczbie Reynoldsa z przedziału Re \in (2,8 $\cdot 10^3$, 3,5 $\cdot 10^7$) posłużyły do wyprowadzenia zależności:

$$\alpha = 1 + 105 \left(\frac{10}{\ln^2 Re}\right)^3 - 11,88 \left(\frac{10}{\ln^2 Re}\right)^2 + 1,208 \left(\frac{10}{\ln^2 Re}\right) \quad (4)$$

Korzystając z tej zależności można wyznaczyć z równania (3) rzeczywiste wartości współczynnika strat miejscowych odniesione do prędkości średniej \overline{U}_d za zwężeniem rury.

Analiza wyników badań doświadczalnych

Środkowa i górna część zakresu wartości liczby Reynoldsa występujących w strefie badawczej zdeterminowana była wartościami najczęściej występującymi podczas przepływów w instalacjach wewnętrznych, a cały zakres dobrano tak, aby w strefie badawczej występowały przepływy laminarne, przejściowe i turbulentne.

Wartości rzeczywistego współczynnika strat miejscowych wyznaczono przy 9 stopniach zwężeń (d/D \in (0,35, 0,82)), uzyskanych w wyniku połączeń rur ze szkła organicznego o następujących średnicach nominalnych: D=22 mm i d=14 mm, D=24 mm i d=14 mm, D=30 mm i d=14 mm, D=34 mm i d=14 mm, D=40 mm i d=14 mm, D=22 mm i d=18 mm, D=24 mm i d=18 mm, D=26 mm i d=18 mm oraz D=34 mm i d=18 mm. Zakresy wartości hydrodynamicznych parametrów przepływu (w temp. t=20 °C) przez rury z tymi zwężeniami podano w tabeli 1. Badania doświadczalne przeprowadzono na stanowisku, którego schemat przedstawiono i omówiono w pracy [1]. Celem wykonania pomiarów przepływów przez nagłe zwężenie rury dokonano przebudowy sekcji badawczej polegającej na wymianie rur oraz zmianach w obrębie wylotu z kolektora włotowego i włotu do kolektora odpływowego tak, aby woda przepływała z rury o średnicy D do rury o średnicy d. Sekcja badawcza stanowiska (rys. 2) wyposażona była w zestaw manometrów podłączonych do otworów piezometrycznych oraz przyrządy do pomiaru wysokości różnic ciśnień pomiędzy odpowiednio dobranymi przekrojami [9].

Podobnie jak w przypadku pomiarów wykonywanych przy nagłych rozszerzeniach rur [1], na podstawie pomierzonych różnic wysokości ciśnień w przekrojach 1 i 2 oraz 3 i 4, strumienia objętości i temperatury przepływającej wody, znajomości rzeczywistych średnic rur przed i za oporem, jak również bezpośredniej zależności współczynnika Coriolisa od liczby Reynoldsa (4), wyznaczono rzeczywiste wartości współczynnika strat miejscowych (ζ) wg wzoru (3) podczas przepływów o różnych wartościach liczby Reynoldsa przez rury o zadanym stopniu zwężenia. Względna niepewność pomiaru wartości współczynnika ζ , którą jest średni błąd kwadratowy, wyznaczony według standardowego postępowania [17], wynosiła około 2%.

Na rysunku 3 przedstawiono wyznaczone wartości współczynnika strat miejscowych (ζ) (odniesionych do prędkości średniej za oporem – \overline{U}_d) w zakresie wartości liczby Reynoldsa Re_d \in (1600, 50000), podczas przepływu przez rury o stopniu zweżenia d/D \in (0,35, 0,82).

Podobnie, jak w przypadku przepływu przez nagłe rozszerzenia rur, także w przypadku nagłych zwężeń, we wszystkich analizowanych przypadkach widoczny był

Stopień zwężenia	Liczba Reynoldsa					Prędkoś	Strumień objętości			
	Re _d		Re _D		Ū₀, m/s		Ū₀, m/s		q _V , dm³/s	
d/D	min.	maks.	min.	maks.	min.	maks.	min.	maks.	min.	maks.
0,35	2800	122200	1000	40000	0,202	8,889	0,025	0,994	0,030	1,328
0,41	2700	106900	1100	43500	0,199	7,779	0,033	1,286	0,030	1,162
0,46	2400	103300	1100	47300	0,175	7,511	0,037	1,579	0,026	1,122
0,53	1900	99100	1000	52200	0,106	5,565	0,029	1,544	0,027	1,396
0,58	2600	122200	1500	70400	0,191	8,885	0,064	2,948	0,029	1,327
0,63	3000	114000	1900	72100	0,220	8,295	0,088	3,316	0,033	1,239
0,69	2000	107400	1400	74200	0,111	6,028	0,053	2,874	0,028	1,512
0,75	1900	102900	1400	76800	0,108	5,773	0,060	3,217	0,027	1,448
0,82	2100	106200	1700	87000	0,117	5,962	0,079	4,002	0,029	1,495

Tabela. 1. Wartości hydrodynamicznych parametrów przepływu podczas badań (t= 20° C) Table 1. Values of hydrodynamic parameters of flow determined in the course of the study (t= 20° C)

znaczny rozrzut wyników pomiarów, przede wszystkim w strefie przejściowej, natomiast w górnym przedziale zakresu pomiarowego (Re_d>Re_d^{gr}) wyniki były już bardziej skupione i przy każdym badanym stopniu zwężenia rury przy liczbie Reynoldsa powyżej Re_d^{gr} nastąpiło ustalenie wartości współczynnika strat miejscowych. Na podstawie zależności doświadczalnych, podobnie jak w analizach przeprowadzonych w odniesieniu do nagłych rozszerzeń rury, wyznaczono krzywą graniczną, na której przy dowolnym analizowanym stopniu zwężenia d/D można odczytać w przybliżeniu przyporządkowaną mu wartość Re_d^{gr}.

Na rysunku 4 przedstawiono zależność rzeczywistych wartości współczynnika strat miejscowych (ζ) od liczby Reynoldsa (Re_d) podczas przepływu wody przez

od liczby Reynoldsa (Re_d) podczas przepływu przez nagłe zwężenie rury

Fig. 4. Resistance coefficient (ζ) related to the Reynolds number (Re_d) during flow through pipe sudden contraction

nagłe zwężenie rury o różnym stopniu, zaproponowaną na podstawie wyników własnych badań doświadczalnych uwzględniających strukturę strugi wody.

Na prawo od krzywej granicznej wartości współczynnika ζ były stałe (nie zależały od liczby Reynoldsa) i wraz ze zmianą stopnia d/D zmieniały się w zakresie 0,05 do 0,33, natomiast na lewo od krzywej granicznej, podobnie jak w przypadku przepływu przez nagłe rozszerzenie rury, malały wraz ze wzrostem liczby Reynoldsa. Przedstawiona w ten sposób zależność może być bezpośrednio wykorzystana w hydraulicznych obliczeniach technicznych dotyczących przepływu wody przez nagłe osiowosymetryczne zwężenie przekroju przepływu. Wyniki uzyskane podczas badań wstępnych [15] zachowują tę samą zależność, także można wyznaczyć krzywą graniczną, na prawo od której wartości współczynnika ζ są stałe, choć nieco większe (do ok. 0,39) niż w przypadku badań omawianych w niniejszej pracy. Różnice te wiążą się z uwzględnieniem zależności α=α(Re) [16], podczas gdy w pracy [15] założono, że $\alpha_d = \alpha_D = 1.$

Wartości wyznaczonego doświadczalnie rzeczywistego współczynnika ζ przy różnych d/D w zakresie przepływu turbulentnego o uformowanym profilu prędkości, a więc przy Re_d>Re_d^{gr}, przedstawiono na rysunku 5 w postaci punktów, a następnie przybliżono krzywą:

$$\zeta = -0.5658(d/D)^2 + 0.0002604(d/D) + 0.4094$$
 (5)

Wyprowadzona w ten sposób zależność (5) oraz obliczone z niej wartości (tab. 2) pozwoliły w łatwy sposób wyznaczyć wartości współczynnika strat miejscowych (nazywane dalej rzeczywistymi) w zakresie uformowanego przepływu turbulentnego.

Tabela 2. Rzeczywiste wartości współczynnika ζ (odniesione do średniej prędkości przepływu w rurze za skokowym zwężeniem) w zakresie przepływów Re_d>Re_d^{gr} Table 2. Real values of ζ coefficient (related to mean flow velocity after pipe sudden contraction) within the flow range of Re_d>Re_d^{gr}

		•			•		,		-		
d/D	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,80	
ζ	0,34	0,32	0,29	0,27	0,24	0,21	0,17	0,13	0,09	0,05	

Tabela. 3. Rzeczywiste warto	ości współczynnika ζ w zaki	resie przepływów o	Re _d >Re _d ^{gr} przez na	agłe zwężenie rury
Table 3. Real values of a	coefficient within the flow	range of Re _d >Re _d ^{gr}	through pipe sudde	en contraction

Speciéb www.zpecizopie Z	Wartości ζ przy różnych stopniach zwężenia d/D								
Sposob wyznaczenia ς	0,35	0,41	0,46	0,53	0,58	0,63	0,69	0,75	0,82
Z empirycznego wzoru (2) wg literatury [5–7]	0,44	0,42	0,40	0,36	0,33	0,30	0,26	0,22	0,16
Wyznaczone doświadczalnie wg wzoru (3) przy α =1 (przedstawione w [15])	0,39	0,38	0,36	-	0,28	0,25	_	_	_
Wyznaczone doświadczalnie (rzeczywiste) wg wzoru (3) przy α=α(Re) zgodnie ze wzorem (4)	0,33	0,32	0,30	0,25	0,21	0,21	0,13	0,06	0,05
Obliczone z zależności (5) po aproksymacji rzeczywistych wartości doświadczalnych	0,34	0,31	0,29	0,25	0,22	0,18	0,14	0,09	0,03

Porównanie obliczonych i doświadczalnych wartości wpółczynnika oporu ζ

W tabeli 3 zamieszczono rzeczywiste wartości współczynnika ζ (wyznaczone doświadczalnie z równania (3) przy $\alpha = \alpha$ (Re) wg (4)), obliczone na podstawie wzoru literaturowego (2) i zaproponowanego wzoru przybliżonego (5) oraz omawiane w pracy [15] przy wybranych wartościach zwężenia d/D. W odniesieniu do przedstawionych wyników badań doświadczalnych podano wartości średnie tego współczynnika przy przepływach scharakteryzowanych liczbą Reynoldsa większą od Re_d^{gr}.

Na rysunku 6 przedstawiono porównanie wartości współczynnika strat miejscowych (ζ) uzyskanych w wyniku badań własnych (z założeniem (4) $\alpha = \alpha(\text{Re})$) z wartościami obliczonymi na podstawie dostępnego w literaturze wzoru empirycznego (2). Można zauważyć, że wyznaczone w badaniach własnych rzeczywiste wartości współczynnika ζ przy przepływie o Re_d>Re_d^{gr} (wartości liczby Reynoldsa często spotykane w instalacjach cieplnych i wodociągowych) są w każdym przypadku mniejsze od wartości uzyskanych z zależności (2). Wiąże się to najprawdopodobniej z innymi stosowanymi obecnie materiałami, które charakteryzują się np. inną chropowatością ścian [10]. Różnica pomiędzy autorskimi wartościami eksperymentalnymi a obliczonymi ze wzoru (2) wynosi od około 20% przy d/D=0,35 do około 70% przy d/D=0,82. Podobnie jak podczas przepływu przez nagłe osiowosymetryczne rozszerzenia, najwieksze różnice obserwowane sa w przypadkach niewielkiego skoku średnicy, czyli przy większych wartościach d/D. Wpływ takiego stopnia zwężenia na wartość współczynnika strat miejscowych jest więc znacznie mniejszy, niż wynikałoby to z doświadczeń prowadzonych w ubiegłym stuleciu.

Doświadczalne wartości współczynnika ζ uzyskane podczas badań wstępnych (z założeniem $\alpha_d = \alpha_D = 1$) [15] były nieco większe od uzyskanych w badaniach omawianych w niniejszej pracy (założenie $\alpha = \alpha(\text{Re})$), ale w obu przypadkach były one mniejsze od wartości uzyskanych na podstawie wzoru (2).

Wnioski

◆ Podczas przepływów laminarnego, przejściowego i słaboturbulentnego (tj. o liczbie Reynoldsa Re_d<Re_d^{gr}) rzeczywisty współczynnik strat miejscowych zależy od liczby Reynoldsa. Struga odzyskuje stabilność w znacznej odległości od oporu miejscowego, a profil prędkości uśrednionych (średnioczasowych) ulega wyraźnym zmianom.

• Podczas przepływu turbulentnego ($\text{Red} > \text{Red}^{\text{gr}}$) zmiany kształtów profili prędkości są nieznaczne i sięgają niewielkich odległości za oporem, co wpływa na szybszą stabilizację strugi za przeszkodą. W tym zakresie Re_{d} wartość współczynnika strat miejscowych (ζ) jest w przybliżeniu stała.

• Wyznaczone doświadczalnie rzeczywiste wartości ζ w zakresie $\text{Re}_d > \text{Re}_d^{\text{gr}}$ są mniejsze (od 20% do 70%) od wartości obliczonych na podstawie wzoru literaturowego (2), lecz w zakresie $\text{Re}_d < \text{Re}_d^{\text{gr}}$ występuje nawet kilkusetprocentowy wzrost w stosunku do wartości dotychczas stosowanych w obliczeniach inżynierskich.

• Zaproponowaną graficzną zależność (rys. 4) rzeczywistej wartości ζ od d/D można stosować w obliczeniach przepływu wody przez nagłe zwężenie rury o stopniu zwężenia d/D \in (0,35, 0,82) w zakresie przepływów przejściowego i turbulentnego o liczbie Reynoldsa Re_d>10⁴.

• W obszarze uformowanego przepływu turbulentnego ($\text{Re}_d > \text{Re}_d^{\text{gr}}$), a zatem przy $\text{Re}_d > 10^4$, w obliczeniach hydraulicznych przepływu wody przez rury o stopniu zwężenia d/D \in (0,35, 0,82) w celu wyznaczenia wartości współczynnika strat miejscowych ζ (odniesionego do prędkości za zwężeniem) zaleca się stosowanie zależności (5).

LITERATURA

- K. STRZELECKA, K. JEŻOWIECKA-KABSCH: Rzeczywiste wartości współczynnika oporów miejscowych podczas przepływu wody przez skokowe rozszerzenie. *Ochrona Środowiska* 2008, vol. 30, nr 2, ss. 29–33.
- K. STRZELECKA, K. JEŻOWIECKA-KABSCH: Struktura pól prędkości w otoczeniu skokowego zwężenia rury. Systems 2008, vol. 13, ss. 145–154.
- Y.A. ÇENGEL, J.M. CIMBALA: Fluid Mechanics, Fundamentals and Applications. McGraw-Hill Higher Education, Boston 2006.
- 4. J. DOUGLAS, J.M. GASIOREK, J.A. SWAFFIED, L.B. JACK: Fluid Mechanics. Pearson Prentice Hall, Harlow 2005.
- I.E. IDELĆIK: Spravočnik po gidrovličeskim soprotivlenijam. Moskva 1975.
- K. JEŻOWIECKA-KABSCH, H. SZEWCZYK: Mechanika Płynów. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2001.
- M.MITOSEK, M.MATLAK, A.KODURA: Zbiór zadań z hydrauliki dla inżynierii i ochrony środowiska. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2004.

Strzelecka, K., Jezowiecka-Kabsch, K. Real Values of Resistance Coefficient in Water Flow Through Pipe Sudden Contraction. *Ochrona Srodowiska* 2010, Vol. 32, No. 1, pp. 33–37.

Abstract: The complexity of flow in the vicinity of the pipe sudden contraction is linked with the velocity field structure, *i.e.* with the Coriolis coefficient value $\alpha \neq 1$. That necessitates the determination of the resistance coefficient (ζ) value by experiments and the assessment of its dependence on the Reynolds number. The experiments reported on in the present paper enabled the real values of the resistance coefficient ζ to be determined (taking into account the relation $\alpha = \alpha$ (Re) established in our own researches) for 9 pipe sudden contractions within

- Z.ORZECHOWSKI, J.PRYWER, R.ZARZYCKI: Mechanika płynów w inżynierii środowiska. WNT, Warszawa 1997.
- W.J.PROSNAK: Mechanika płynów. Tom I. Statyka płynów i dynamika cieczy. PWN, Warszawa 1970.
- 10. F.M. WHITE: Fluid Mechanics. McGraw-Hill, Boston 2005.
- K. JEŻOWIECKA-KABSCH, K. STRZELECKA: Wpływ nagłego rozszerzenia rury na wartość współczynnika strat miejscowych. *Ochrona Środowiska* 2006, vol. 28, nr 2, ss. 53–56.
- K. STRZELECKA: Badania osiowosymetrycznego przepływu przez przewód ze skokową zmianą średnicy. Rozprawa doktorska. Raporty Inst. Techn. Ciepl. PWr, Seria PRE nr 7, Wrocław 2007.
- C. GRABARCZYK: Przepływy cieczy w przewodach. Metody obliczeniowe. Envirotech, Poznań 1997.
- PN-EN 1267: 1999 Armatura przemysłowa. Badanie oporu przepływu wodą.
- W.WĘDRYCHOWICZ, K. JEŻOWIECKA-KABSCH, A. GRY-GORIEV, K. STRZELECKA: Zależność współczynnika strat miejscowych od liczby Reynoldsa podczas przepływu wody przez nagle zwężenie rury. *Ochrona Środowiska* 2006, vol. 28, nr 3, ss. 51–54.
- K. STRZELECKA, K. JEŻOWIECKA-KABSCH: Badania współczynnika Coriolisa podczas przejściowego i turbulentnego przepływu wody w rurze. *Ochrona Środowiska* 2008, vol. 30, nr 1, ss. 21–25.
- I.N. BRONSZTEJN, K.A. SIEMIENDIAJEW, G. MUSIAL: Nowoczesne kompendium matematyki. PWN, Warszawa 2004.

the range of $d/D \in (0.35, 0.82)$. The real values obtained by experiments were compared with the values calculated in terms of a formula commonly used in engineering. Without exception, the resistance coefficient values determined by experiments were found to be by 20% to 70% lower depending on sudden contraction (d/D). The formula ζ =-0.5658(d/D)²+0.0002604(d/D)+0.4094 (as well as the relevant table) was proposed for the description of the turbulent flow (Re_d>10⁴) through the pipe sudden contraction, and thus enabled the value of the coefficient ζ to be determined for the sudden contraction chosen from the range of $d/D \in (0.35, 0.82)$.

Keywords: Pipe flow, resistance coefficient, pipe sudden contraction.