2016

Jerzy Choma, Kamila Stachurska, Mietek Jaroniec

Selektywność adsorpcji CO₂/N₂ na nanoporowatych węglach aktywnych

Gromadzenie się dwutlenku węgla w atmosferze spowodowane jest między innymi emisją gazów przemysłowych, spalaniem paliw, erupcja wulkanów, a także pożarami lasów. Średni wzrost temperatury powietrza w pobliżu powierzchni Ziemi w latach 1906-2005 wyniósł 0.74 ± 0.18 °C [1]. Pochłanianie CO₂ z atmosfery, a także z gazów odlotowych może być realizowane za pomocą stałych adsorbentów z wykorzystaniem adsorpcji fizycznej lub chemicznej [2]. W ciągu ostatnich dziesięciu lat były intensywnie badane różne materiały porowate, jako potencjalne adsorbenty do pochłaniania CO_2 – zeolity [3], modyfikowane porowate krzemionki [4], porowate związki metaloorganiczne [5] oraz materiały węglowe [6,7]. Wśród nich nanoporowate wegle i sieci metaloorganiczne zyskały szczególne znaczenie, jako potencjalne adsorbenty dwutlenku wegla. Adsorbenty weglowe ciesza się szczególnym zainteresowaniem ze względu na ich hydrofobowość i dużą stabilność termiczną. Są one względnie tanie, mają dużą odporność chemiczną, zarówno w środowisku kwasowym, jak i zasadowym, otrzymywanie węgli jest dobrze przebadane, w szczególności rozwijanie ich struktury porowatej, a ponadto regeneracja ich właściwości adsorpcyjnych jest stosunkowo tania i prosta.

Porowate materiały węglowe mogą być uważane za bardzo obiecujące adsorbenty do wychwytywania CO2. Różne rodzaje materiałów węglowych, takich jak przede wszystkim węgle aktywne, kompozyty węglowo-metaliczne czy wegle aktywne modyfikowane azotem badano pod względem ich przydatności do adsorpcji CO₂. W celu poprawy adsorpcji CO₂ na tych materiałach dąży się do zwiększenia objętości najmniejszych porów (zwanych ultramikroporami) o wymiarach mniejszych od 0,7 nm oraz do przyłączenia grup funkcyjnych zawierających azot do powierzchni węgla [7]. W literaturze znaleźć można wiele prac, w których wykazano, że materiały weglowe o bardzo dobrze rozwiniętej mikroporowatości z powodzeniem mogą być wykorzystywane do adsorpcji CO₂. Ostatnio autorzy pracy [8] otrzymali ze smoły naftowej, aktywowanej za pomocą KOH, molekularne sita węglowe o dużej powierzchni właściwej i pojemności adsorpcyjnej względem CO₂ wynoszącej 4,54 mmol/g. W pracach [9] i [10] badano pochłanianie CO₂ na mikroporowatych weglach w funkcji wymiaru ich porów. Autorzy pracy [9] wykazali, że adsorpcja CO₂ przy

małym ciśnieniu (<0,1 bar) w temperaturze około 20°C na mikroporowatych weglach otrzymanych z weglików dobrze koreluje z objętością mikroporów o wymiarach mniejszych lub równych 0,5 nm, natomiast adsorpcja CO₂ na tych weglach pod ciśnieniem około 1 bar koreluje z objetościa mikroporów o wymiarach mniejszych od 0,8 nm. Maksymalna adsorpcja CO_2 na tych weglach wynosiła 7,1 mmol/g w temperaturze 0°C. Autorzy pracy [10] badali aktywowany za pomoca KOH koks naftowy i stwierdzili, że mikropory o wymiarach mniejszych od 1nm były odpowiedzialne za adsorpcję CO₂ pod ciśnieniem 1bar. Węgle te miały powierzchnię właściwą około 3000 m²/g i adsorbowały CO2 w ilości ok. 15% (wag.) pod ciśnieniem 1 bar. W pracy [11] korelowano powierzchnię właściwą (S_{BET}) (od ok. 1400 m²/g do ok. 3800 m²/g) węgli aktywnych, niemodyfikowanych i modyfikowanych azotem, z ilością adsorbowanego CO2. Wykazano, że węgle modyfikowane adsorbowały CO₂ w ilości 6÷7% (wag.) w temperaturze 25°C pod ciśnieniem 1bar. Autorzy pracy [7] otrzymali serię aktywnych kul węglowych z żywicy fenolowej w jednoetapowej syntezie zmodyfikowaną metodą Stöbera. Miały one średnice od 200 nm do 400 nm, dużą powierzchnię właściwą (od 730 m²/g do 2930 m²/g), wąskie mikropory (o średnicy <1 nm) i dużą objętość mikroporów (od 0,28 cm³/g do 1,12 cm³/g) oraz adsorbowały dużą ilość $CO_2 - 8,05 \text{ mmol/g}$ w temperaturze $0^{\circ}C$ i 4,55 mmol/g w temperaturze 25°C pod ciśnieniem 1 bar. Równie bardzo mikroporowate kule węglowe otrzymano z formaldehydu i rezorcynolu, jako prekursorów weglowych oraz szczawianu potasu jako aktywatora, w jednoetapowej syntezie [12]. Mikroporowate kule weglowe miały całkowitą powierzchnię właściwą około 2130 m²/g, objętość porów około 1,10 cm³/g, objętość mikroporów około 0,78 cm³/g i adsorbowały CO₂ w ilości 6,6 mmol/g w temperaturze 0°C pod ciśnieniem 1 atm.

Wyniki te pokazują, że aby uzyskać dużą adsorpcję CO_2 za pomocą porowatych materiałów węglowych, węgle te muszą mieć bardzo dobrze rozwiniętą mikroporowatość, szczególnie w obszarze najmniejszych mikroporów, czyli ultramikroporów. Niekiedy węgle aktywne charakteryzujące się bardzo dużą powierzchnią właściwą, np. węgiel aktywny Maxorb (S_{BET}~3300 m²/g), adsorbują CO₂ w niewielkich ilościach (Maxorb tylko 2,7 mmol/g w normalnych warunkach) [11] właśnie z tego powodu, że nie mają wystarczająco dobrze rozwiniętej mikroporowatości.

W niniejszej pracy autorzy podjęli próbę charakterystyki oddziaływań CO_2 w porównaniu z oddziaływaniami N_2 z nanoporowatymi materiałami węglowymi, w kontekście wykorzystania tych materiałów do pochłaniania CO_2 . Do

Prof. dr hab. inż. J. Choma, mgr inż. K. Stachurska: Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, Zakład Chemii, ul. generała Sylwestra Kaliskiego 2, 00-908 Warszawa jerzy.choma @wat.edu.pl

Prof. dr hab. M. Jaroniec: Kent State University, Department of Chemistry and Biochemistry, Kent, Ohio 44-242 USA, *jaroniec* @kent.edu

charakteryzacji tych oddziaływań wykorzystano selektywność adsorpcji CO_2 w stosunku do N_2 , obliczoną na podstawie izoterm adsorpcji zmierzonych w przedziale temperatury od 0°C do 60°C oraz w przedziale ciśnień względnych od około 0,005 bar do około 1,2 bar w przypadku CO_2 i od około 0,001 bar do około 1,2 bar w przypadku N_2 , na jednym mezoporowatym i pięciu mikroporowatych węglach otrzymanych z różnych polimerów.

Część doświadczalna

Do badań wykorzystano sześć nanoporowatych materiałów węglowych:

 węgiel aktywny oznaczony symbolem AC-PPy otrzymano z polipirolu (Sigma-Aldrich, Niemcy); szczegółowy sposób jego preparatyki przedstawiono w pracy [13],

 węgiel aktywny oznaczony symbolem AC-SDVB otrzymano z sulfonowanej żywicy styrenowo-dwuwinylobenzenowej Amberjet 1200H (Rohm and Haas, USA); szczegółowy sposób syntezy przedstawiono w pracy [14],

 węgiel aktywny oznaczony symbolem AC-PVDF otrzymano z poli(fluorku winylidenu) (Arkema, Francja); szczegółowy sposób otrzymywania opisano w pracy [13],

 węgiel aktywny oznaczony symbolem AC-CD otrzymano z odpadowych płyt CD i DVD według przepisu przedstawionego w pracy [15],

 węgiel oznaczony symbolem OMC-PF był mezoporowatym uporządkowanym węglem otrzymanym z fenolu i formaldehydu metodą miękkiego odwzorowania; węgiel ten otrzymano według przepisu zawartego w pracy [16],

 w celach porównawczych do badań wykorzystano także granulowany węgiel aktywny Filtrasorb 400 (Chemviron Carbon, Wielka Brytania), który oznaczono symbolem AC-F400.

W tabeli 1 przedstawiono parametry charakteryzujące strukturę porowatą nanoporowatych materiałów węglowych. Parametry te zostały wyznaczone na podstawie niskotemperaturowych (-196° C) izoterm adsorpcji azotu. Powierzchnię właściwą (S_{BET}) oraz całkowitą objętość porów (V_t) i mikroporowatość zaczerpnięto z danych literaturowych.

Pomiary wykazały, że nanoporowate węgle charakteryzowały się dużą powierzchnią właściwą (S_{BET}) zmieniającą się w przedziale od 660 m²/g (OMC-PF) do 2920 m²/g

Tabela 1. Parametry struktury porowatej węgli aktywnych obliczone na podstawie niskotemperaturowej (–196°C) adsorpcji azotu

Table 1. Porous structure parameters of active carbons calculated on the basis of low-temperature (–196°C) nitrogen adsorption

Węgiel aktywny	S _{BET} , m²/g	V _t , cm ³ /g	V _{ultra} , cm ³ /g	Mikr., %	Pozycja literatury
AC-PPy	1810	0,87	0,33	90	
AC-SDVB	2480	1,33	0,14	80	[17, 18]
AC-PVDF	2920	1,64	0,07	00	
AC-CD	2720	1,30	0,19	90	[17]
OMC-PF	660	0,65	0,16	34	[18]
AC-F400	1260	0,73	0,19	74	[17]

 S_{BET} – powierzchnia właściwa obliczona metodą Brunauera-Emmetta-Tellera na podstawie izotermy adsorpcji azotu w przedziale ciśnień względnych 0,05÷0,2, V_t – całkowita objętość porów wyznaczona na podstawie pojedynczego punktu na izotermie adsorpcji azotu przy ciśnieniu względnym około 0,99, V_{ultra} – objętość ultramikroporów o średnicy <0,7 nm obliczona w wyniku całkowania funkcji rozkładu objętości porów metodą DFT, Mikr. (mikroporowatość) – stosunek objętości mikroporów do całkowitej objętości porów

(AC-PVDF), dużą całkowitą objętością porów (V_t) od 0,65 cm³/g (OMC-PF) do 1,64 cm³/g (AC-PVDF) oraz dużą objętością ultramikroporów (V_{ultra}) od 0,07 cm³/g (AC-PVDF) do 0,33 cm³/g (AC-PPy). Zdecydowaną większość węgli stanowiły węgle mikroporowate, a ich mikroporowatość zmieniała się w przedziale od 74% (AC-F400) do 90% (AC-PPy, AC-PVDF i AC-CD). Jedynie węgiel OMC-PF był węglem mezoporowatym.

Pomiary

Izotermy adsorpcji N₂ w temperaturze -196 °C oraz CO₂ i N₂ w temperaturze 0 °C, 10 °C, 20 °C, 30 °C, 40 °C, 50 °C i 60 °C wyznaczono za pomocą objętościowego analizatora powierzchni i porowatości ASAP 2020 (Micromeritics Instrument Corp., Norcross, GA, USA). Wszystkie badane próbki materiałów węglowych przed pomiarami adsorpcyjnymi odgazowano w temperaturze 200 °C w czasie 2 h pod zmniejszonym ciśnieniem. Na rysunku 1 pokazano przykładowe izotermy adsorpcji CO₂ na węglach aktywnych AC-CD oraz AC-F400 w temperaturze od 0 °C do 60 °C przy ciśnieniu zmieniającym się od około 0,005 bar do około 1,2 bar, natomiast na rysunku 2 pokazano przykładowe izotermy adsorpcji N₂ na tych samych węglach aktywnych przy ciśnieniu w zakresie od około 0,001 bar do 1,2 bar.

Obliczenia

Na podstawie doświadczalnych izoterm adsorpcji CO_2 i N₂, wyznaczonych w przedziale temperatury od 0°C do 60°C, przeprowadzono ilościową analizę selektywności adsorpcji CO₂ w stosunku do N₂. Selektywność adsorpcji CO_2/N_2 na sześciu nanoporowatych materiałach węglowych wyznaczono z wykorzystaniem stałej Henry'ego, aproksymując wszystkie izotermy adsorpcji w badanych układach za pomocą następującej postaci równania wirialnego [19, 20]:

$$\ln(a/p) = A_0 + A_1 a + A_2 a^2 + A_3 a^3$$
(1)

w którym a jest ilością zaadsorbowanego CO_2 lub N_2 (mmol/g) w funkcji ciśnienia równowagowego (p, bar).

Pierwszy wirialny współczynnik równania (1) jest związany ze stałą K_H następującą zależnością:

$$K_{\rm H} = \exp(A_{\rm o}) \tag{2}$$

Jeśli pokrycie powierzchni adsorbentu adsorbatem maleje i zmierza do zera, wówczas to równanie wirialne upraszcza się do równania izotermy Henry'ego o następującej postaci:

$$a = K_{\rm H} p \tag{3}$$

Współczynnik A_o jest związany z energią oddziaływania adsorbat–adsorbent, natomiast A_1 z energią oddziaływania adsorbat–adsorbat.

W określonej temperaturze selektywność adsorpcji CO_2 względem N_2 może być zdefiniowana jako stosunek odpowiednich stałych Henry'ego:

$$S^{1} = K_{H(CO_{2})}/K_{H(N_{2})}$$
 (4)

Na podstawie doświadczalnych izoterm adsorpcji CO_2 i N₂ w zakresie temperatury od 0°C do 60°C na materiałach węglowych wyznaczono wartości współczynników A₀, A₁, A₂, i A₃ wirialnego równania adsorpcji (1), a następnie wartości K_{H(CO2)} i K_{H(N2)} z równania (2) oraz S^T z równania (4).

Rys. 1. Izotermy adsorpcji CO₂ na węglach aktywnych AC-CD i AC-F400, wyznaczone w temperaturze od 0°C do 60°C Fig. 1. CO₂ adsorption isotherms for AC-CD and AC-F400 active carbons at temperatures between 0°C and 60°C

Rys. 3. Zależność logarytmu naturalnego ze stosunku adsorpcji CO₂ (a) i ciśnienia (p) od adsorpcji CO₂ (a) na węglach aktywnych AC-CD i AC-F400 (punkty – dane doświadczalne, linie ciągłe – aproksymacja danych równaniem (1))
Fig. 3. Dependence of the natural logarithm of the ratio of CO₂ amount adsorbed (a) and pressure (p) on the CO₂ amount adsorbed (a) for AC-CD and AC-F400 active carbons (points – experimental data, solid lines – the best fit of data by means of eq. (1))

Rys. 2. Izotermy adsorpcji N₂ na węglach aktywnych AC-CD i AC-F400 wyznaczone w temperaturze od 0°C do 60°C Fig. 2. N₂ adsorption isotherms for AC-CD and AC-F400 active carbons at temperatures between 0°C and 60°C

Rys. 4. Zależność logarytmu naturalnego ze stosunku adsorpcji N₂ (a) i ciśnienia (p) od adsorpcji N₂ (a) na węglach aktywnych AC-CD i AC-F400 (punkty – dane doświadczalne, linie ciągłe – aproksymacja danych równaniem (1)).
Fig. 4. Dependence of the natural logarithm of the ratio of N₂ amount adsorbed (a) and pressure (p) on the N₂ amount adsorbed (a) for AC-CD and AC-F400 active carbons (points – experimental data, solid lines – the best fit of data by means of eq. (1))

Tabela 2. Wartości stałej Henry'ego (K_H – obliczonej z równania (2)) oraz selektywność adsorpcji (S^T – obliczona z równania (4)) CO₂ i N₂ w temperaturze 0÷60°C Table 2. Values of the Henry's constant (K_H calculated from the equation (2)) and the adsorption selectivity (S^T calculated from the equation (4)) of CO₂ and N₂ at temperatures between 0 and 60°C

Adsorpcja CO ₂			Adsorpcja N ₂				- 7	
Temp., °C	Ao	K _H	R	Temp., °C	Ao	K _H	R	S'
	1	1	węg	giel aktywny AC-	PPy	I	1	1
0	3,332	27,99	0,9992	0	0,051	1,052	0,9992	26,61
10	2,898	18,14	0,9991	10	-0,268	0,765	0,9993	23,71
20	2,515	12,37	0,9995	20	-0,479	0,619	0,9994	19,98
30	2,107	8,224	0,9996	30	-0,794	0,452	0,9950	18,19
40	1,774	5,894	0,9995	40	-1,121	0,326	0,9896	18,08
50	1,372	3,943	0,9999	50	-1.219	0,296	0,9920	13,32
60	1,049	2,855	0,9997	60	-1,929	0,145	0,9846	19,69
	weaiel aktvwnv AC-SDVB							
0	2,485	12,00	0,9982	0	-0,343	0,710	0,9997	16,90
10	2,018	7,523	0,9996	10	-0,521	0,594		12,66
20	1,681	5,371	0,9998	20	-0,721	0,486	- 0,9998	11,05
30	1,330	3,781	0,9998	30	-0,954	0,385	0,9949	9,82
40	1,103	3,013		40	-1,131	0,323	0,9976	9,33
50	0,730	2,075	0,9999	50	-1,357	0,257	0,9952	8,07
60	0,424	1,528	0,9998	60	-1,620	0,198	0,9970	7,72
	1	1	węgi	el aktywny AC-F	vVDF	1	1	
0	2,024	7,570	0,9966	0	-0,605	0,546	0,9970	13,86
10	1,690	5,419	0,9965	10	-0,766	0,465	0,9961	11,65
20	1,390	4,015	0,9968	20	-1,029	0,357	0,9712	11,25
30	0,988	2,686	0,9988	30	-1,256	0,285	0,9578	9,42
40	0,646	1,908	0,9968	40	-1,709	0,181	0,9831	10,54
50	0,380	1,462	0,9991	50	-2,329	0,087	0,7011	15,07
60	0,044	1,045	0,9993	60	-3,240	0,039	0,5429	26,79
	-	-	wę	giel aktywny AC-	·CD	-	-	
0	2,566	13,01	0,9979	0	-0,221	0,802	0,9996	16,22
10	2,117	8,306	0,9998	10	-0,471	0,624	0,9985	13,31
20	1,747	5,737		20	-0,644	0,525	0,9991	10,93
30	1,444	4,238	0,9999	30	-0,893	0,409	0,9969	10,36
40	1,095	2,989		40	-1,119	0,327	0,9987	9,14
50	0,811	2,250	0,9997	50	-1,277	0,279	0,9929	8,06
60	0,451	1,570	0,9992	60	-1,775	0,169	0,9679	9,29
wegiel aktywny OMC-PF								
0	3,696	40,29		0	0,031	1,031	0,9999	39,08
10	3,266	26,21	-	10	-0,212	0,809		32,40
20	2,830	16,95	0,9999	20	-0,486	0,615	0,9996	27,56
30	2,386	10,87		30	-0,762	0,467	0,9999	23,28
40	1,916	6,794		40	-1,122	0,326	0,9993	20,84
50	1,613	5,018		50	-1,405	0,245		20,48
60	1,218	3,380		60	-1,848	0,158		21,39
węgiel aktywny AC-F400								
0	2,876	17,74	0,9986	0	-0,302	0,739		24,01
10	2,495	12,12	0,9999	10	-0,615	0,541	0.9995	22,40
20	2,084	8,037	0,9997	20	-0,829	0,436		18,43
30	1,726	5,618	0,9996	30	-1,077	0,341	0,9973	16,48
40	1,359	3,892		40	-1,464	0,231	0,9971	16,85
50	0,979	2,662	0,9998	50	-1,763	0,172	0,9939	15,48
60	0,601	1,824		60	-2,321	0,098	0,9763	18,61
L								

Wyniki badań i dyskusja

Najważniejszym celem pracy było wyznaczenie selektywności adsorpcji CO2 względem N2 w szerokim przedziale wartości temperatury od 0°C do 60°C. Wartości tego parametru oddają różnicę w oddziaływaniach adsorbatów z powierzchnia materiałów weglowych. Im wartość współczynnika selektywności jest większa, tym silniejsze jest oddziaływanie CO2 z powierzchnią danego węgla w porównaniu do N2. Wykresy izoterm adsorpcji CO2 na weglach aktywnych AC-CD i AC-F400 przedstawiono na rysunku 1, natomiast na rysunku 2 pokazano izotermy adsorpcji N₂ na tych węglach. Ponieważ adsorpcja obu gazów ma charakter adsorpcji fizycznej, dlatego jej wartość maleje wraz ze wzrostem temperatury. Na wszystkich badanych węglach adsorpcja zarówno CO2, jak i N2 była największa w temperaturze 0°C, zaś najmniejsza w temperaturze 60°C. Tak wyznaczone izotermy adsorpcji CO2 i N2 opisano za pomocą wirialnego równania (1) w całym zakresie ciśnień równowagowych, tj. od około 0,005 bar do około 1,2 bar w przypadku CO₂ oraz od około 0,001 bar do około 1,2 bar w przypadku N₂. Na rysunku 3 pokazano efekt aproksymacji danych adsorpcji CO2 na węglach aktywnym AC--CD i AC-F400 uzyskanych w temperaturze w przedziale 0÷60°C. Punkty na tych wykresach reprezentują dane doświadczalne, natomiast linie ciągłe wyznaczono z równania (1), za pomocą którego aproksymowano te dane. Na osi rzędnych tych wykresów przedstawiono wartości logarytmu naturalnego ze stosunku adsorpcji (a, mmol/g) i ciśnienia (p, bar), natomiast na osi odciętych wartości adsorpcji (a, mmol/g). Podobnie na rysunku 4 pokazano efekt aproksymacji danych adsorpcji N2 na tych samych węglach aktywnych. Trzeba podkreślić, że za pomocą równania wirialnego dobrze opisano dane doświadczalne adsorpcji, przy czym nieco lepiej adsorpcję CO₂ niż N₂.

Doświadczalne izotermy adsorpcji CO2 i N2 na badanych nanoporowatych materiałach węglowych w temperaturze 0÷60°C stanowiły podstawę do wyznaczenia parametrów wirialnego równania adsorpcji (1). Wartości pierwszego wirialnego współczynnika (Ao) oraz stałej Henry'ego (K_H), wyznaczone na podstawie równania (2), a także wartości współczynnika korelacji (R), wynikające z dokładności opisu danych doświadczalnych za pomocą równania wirialnego, odpowiednio w przypadku adsorpcji CO₂ i N₂ na badanych węglach, przedstawiono w tabeli 2, w której podano także wartości selektywności (S^T) adsorpcji CO₂ w stosunku do adsorpcji N₂, obliczone na podstawie równania (4). Analizując dane przedstawione w tej tabeli stwierdzono, że wartości stałej Henry'ego w przypadku adsorpcji CO2 (KH(CO2)) były o rząd wielkości większe od K_{H(N2)}, co świadczy o znacząco większej energii oddziaływania cząsteczek CO₂ z powierzchnią węgla, w porównaniu z energią oddziaływania cząsteczek N₂. Wartości stałej Henry'ego $K_{H(CO_2)}$ i $K_{H(N_2)}$ rzutują też na wartości selektywności. Te ostatnie były duże, co wskazuje na to, że cząsteczki CO2 preferencyjnie adsorbowały się na badanych węglach w porównaniu do cząsteczek N2.

Na rysunku 5 pokazano zależność wartości lnK_H w funkcji odwrotności temperatury podczas adsorpcji CO_2 i N₂ na badanych węglach aktywnych. Ponieważ stała Henry'ego jest wielkością termodynamiczną, to temperaturę w tej zależności wyrażono w kelwinach. Otrzymane zależności były liniowe, ze współczynnikiem korelacji równym odpowiednio 0,9993 (CO₂) i 0,9806 (N₂) w przypadku adsorpcji na węglu AC-CD oraz 0,9985 (CO₂) i 0,9795 (N₂) w przypadku adsorpcji na węglu AC-F400.

Rys. 5. Zależność logarytmu naturalnego stałej Henry'ego (K_H) od odwrotności temperatury podczas adsorpcji CO₂ i N₂ na węglach aktywnych AC-CD i AC-F400

Fig. 5. Dependence of the natural logarithm of Henry's constant (K_H) on inverse temperature for CO₂ and N₂ adsorption on AC-CD and AC-F400 active carbons

Stała Henry'ego (K_H) jest stałą równowagi procesu adsorpcji, zatem współczynnik kierunkowy prostej w przypadku zależności lnK_H=f(1/T) pomnożony przez stałą gazową jest energią adsorpcji (ε , kJ/mol). Obliczone wartości energii adsorpcji CO₂ i N₂ na badanych węglach aktywnych przedstawiono w tabeli 3. Otrzymane wartości energii adsorpcji CO₂ były porównywalne do wartości podanych w pracy [18], przy czym w przypadku każdego z badanych węgli aktywnych były większe o kilka kJ/mol od wartości energii adsorpcji N₂.

Tabela 3. Energia adsorpcji (ε) CO₂ i N₂ na węglach aktywnych wyznaczona na podstawie liniowej zależności lnK_H w funkcji odwrotności temperatury
 Table 3. Adsorption energy (ε) for CO₂ and N₂ on the active carbons obtained on the basis of the linear dependence of lnK_H as a function of the inverse temperature

Węgiel aktywny	ε _{CO2} kJ/mol	ε _{N2} kJ/mol
AC-PPy	26,8	22,9
AC-SDVB	25,3	16,0
AC-PVDF	25,2	23,9
AC-CD	26,0	18,2
OMC-PF	31,5	23,3
AC-F400	28,6	24,2

Podsumowanie

Badane węgle aktywne (pięć mikroporowatych i jeden mezoporowaty) okazały się bardzo dobrymi adsorbentami do adsorpcji fizycznej CO₂ w zakresie wartości temperatury od 0°C do 60°C. Najlepszy spośród badanych materiałów – węgiel aktywny AC-PPy – adsorbował CO₂ w temperaturze 0°C w ilości 7,58 mmol/g pod ciśnieniem około 1 bar, natomiast N₂ w ilości zaledwie 0,97 mmol/g w tych samych warunkach. Wykorzystanie wirialnego równania pozwoliło na dobry opis doświadczalnych izoterm adsorpcji CO₂ i N₂, a następnie na obliczenie wartości stałej Henry'ego oraz selektywności adsorpcji CO_2 w stosunku do N_2 . Otrzymane wartości selektywności wskazywały na znacznie silniejsze oddziaływanie CO_2 z powierzchnią węgla niż N_2 . Z tego względu węgle aktywne z dużym udziałem mikroporowatości mogą być z powodzeniem stosowane do adsorpcji CO_2 ze strumienia przepływających gazów spalinowych zawierających między innymi azot.

Prof. J. Choma – praca została częściowo sfinansowana ze środków Ministerstwa Nauki i Szkolnictwa Wyższego, w ramach projektu POIG.01.03.01-14-016/08 pt. "Nowe materiały fotoniczne i ich zaawansowane zastosowania".

Prof. J. Choma, mgr K. Stachurska – praca została częściowo sfinansowana ze środków Narodowego Centrum Nauki, przyznanych na podstawie decyzji DEC-2013/09/B/ /ST5/00076.

LITERATURA

- 1. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- C. GUNATHILAKE, M. JARONIEC: Mesoporous aluminazirconia-organosilica composites for CO₂ capture at ambient and elevated temperatures. *Journal of Materials Chemistry A* 2015, Vol. 3, pp. 2707–2716.
- S. E. JEE, D. S. SHOLL: Carbon dioxide and methane transport in DDR zeolite: Insights from molecular simulations into carbon separations in small pore zeolites. *Journal of the American Chemical Society* 2009, Vol. 131, pp. 7896–7904.
- J. C. HICKS, J. H. DRESE, D. J. FAUTH, M. L. GRAY, G. QI, C. W. JONES: Designing adsorbents for CO₂ capture from gas-hyper-branched aminosilicas capable of capturing CO₂ reversibly. *Journal of the American Chemical Society* 2008, Vol. 130, pp. 2902–2903.
- K.S. WALTON, A.R. MILLWARD, D. DUBBELDAM, H. FROST, J. J. LOW, O. M. YAGHI, R. Q. SNURR: Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. *Journal of the American Chemical Society* 2008, Vol. 130, pp. 406–407.
- G. P. HAO, W.C. LI, D. QIAN, A.H. LU: Rapid synthesis of nitrogen-doped porous carbon monolith for CO₂ capture. *Advanced Materials* 2010, Vol. 22, pp. 853–857.
- N.P. WICKRAMARATNE, M. JARONIEC: Activated carbon spheres for CO₂ adsorption. ACS Applied Materials & Interfaces 2013, Vol. 5, pp. 1849–1855.
- J. SILVESTRE-ALBERTO, A. WAHBY, A. SEPULVEDA-ESCRIBANO, M. MARTINEZ-ESCANDELL, K. KANE-KO, F. RODRIGUEZ-REINOSO: Ultrahigh CO₂ adsorption capacity on carbon molecular sieves at room temperature. *Chemical Communications* 2011, Vol. 47, pp. 6840–6842.
- V. PRESSER, J. MCDONOUGH. S. H. YEON, Y. GOGOT-SI: Effect of pore size on carbon dioxide sorption by carbide derived carbon. *Energy Environmental Science* 2011, Vol. 4, pp. 3059–3066.

Choma, J., Stachurska, K., Jaroniec, M. Adsorption Selectivity of CO_2/N_2 on Nanoporous Active Carbons. *Ochrona Srodowiska* 2016, Vol. 38, No. 3, pp. 3–8.

Abstract: Some polymers, including waste polymers, are very good precursors for synthesis of porous carbons. Data for adsorption of CO₂ and N₂ at temperatures in the range from 0°C to 60°C and pressures ranging from 0.005 to 1.2 bar and 0.001 to 1.2 bar for CO₂ and N₂, respectively are presented for one ordered mesoporous and five microporous activated carbons obtained from polymers. Adsorption isotherms of CO₂ and N₂ were approximated by means of virial equation and used to determine its coefficients. The first virial coefficient was used to determine the Henry's constants for CO₂ and N₂ adsorption at

- X. HU, M. RADOSZ, K.A. CYCHOSZ, M. TOMMES: CO₂filling capacity and selectivity of carbon nanopores: Synthesis texture and pore-size distribution from quenched-solid density functional theory (QSDFT). *Environmental Science* & *Technology* 2011, Vol. 45, pp. 7068–7074.
- L. WANG, R. T. YANG: Significantly increased CO₂ adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping. *The Journal of Physical Chemistry C* 2012, Vol. 116, pp. 1099–1106.
- J. LUDWINOWICZ, M. JARONIEC: Potassium salt-assisted synthesis of highly microporous carbon spheres for CO₂. *Carbon* 2015, Vol. 82, pp. 297–303.
- J.CHOMA,K.STACHURSKA,Ł.OSUCHOWSKI,A.DZIU-RA, M. JARONIEC: Adsorpcja dwutlenku węgla na węglach aktywnych otrzymanych z prekursorów polimerowych (Carbon dioxide adsorption on activated carbons obtained from polymeric precursors). *Ochrona Środowiska* 2015, vol. 37, nr 4, ss. 3–8.
- J. CHOMA, Ł. OSUCHOWSKI, M. MARSZEWSKI, M. JA-RONIEC: Highly microporous polymer-based carbons for CO₂ and H₂ adsorption. *RSC Advances* 2014, Vol. 4, No. 28, pp. 14795–14802.
- J. CHOMA, M. MARSZEWSKI, L. OSUCHOWSKI, J. JA-GIELLO, A. DZIURA, M. JARONIEC: Adsorption properties of activated carbons prepared from waste CDs and DVDs. ACS Sustainable Chemistry & Engineering 2015, Vol. 3, pp. 733–742.
- 16. J. CHOMA, A. KALINOWSKA, K. JEDYNAK, M. JARO-NIEC: Ocena powtarzalności syntezy i właściwości adsorpcyjnych uporządkowanych mezoporowatych węgli otrzymanych metodą miękkiego odwzorowania (Reproducibility of the synthesis and adsorption properties of ordered mesoporous carbons obtained by the soft-templating method). *Ochrona Środowiska* 2012, vol. 34, nr 3, ss. 3–10.
- J. CHOMA, K. STACHURSKA, A. DZIURA, M. JARO-NIEC: Opis adsorpcji dwutlenku węgla w różnych temperaturach na mikroporowatych węglach aktywnych (Description of carbon dioxide adsorption on microporous active carbons at different temperatures). *Ochrona Środowiska* 2016, vol. 38, nr 1, ss. 3–8.
- J. CHOMA, K. STACHURSKA, M. MARSZEWSKI, M. JA-RONIEC: Equilibrium isotherms and isosteric heat for CO₂ adsorption on nanoporous carbons from polymers. *Adsorption* 2016, Vol. 22, pp. 581–588.
- S. YANG, X. LIN, W. LEWIS, M. SUYETIN, E. BICHOUT-SKAJA, J.E. PARKER, C.C. TANG, D.R. ALLAN, P.J. RIZ-KALLAH, P. HUBBERSTEY, N.R. CHAMPNESS, K.M. THOMAS, A.J. BLAKE, M. SCHRÖDER: A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. *Nature Materials* 2012, Vol. 11, pp. 710–716.
- J.G. BELL, X. ZHAO, Y. UNGER, K. M. THOMAS: Adsorption of chloroaromatic models for dioxins on porous carbons: The influence of adsorbate structure and surface functional groups on surface interactions and adsorption kinetics. *The Journal of Physical Chemistry C* 2011, Vol. 115, pp. 2776–2789.

temperatures from 0°C to 60°C, then applied for calculation of adsorption selectivity of CO₂ over N₂ for the carbons studied. It was established that the value of Henry's constant for CO₂ adsorption is an order of a magnitude larger than the corresponding value of Henry's constant for N₂ adsorption. High adsorption selectivity value obtained on the basis of these constants for CO₂ compared to N₂ indicate much stronger interaction of CO₂ with a carbon surface than that of N₂. This would indicate that the nanoporous carbons under studies can be readily applied for adsorption of CO₂, including CO₂ adsorption from a stream of flue gas containing nitrogen.

Keywords: Carbon material, polymer carbonization, adsorption temperature, CO_2/N_2 adsorption, selectivity.