2009

Mariusz Dudziak, Michał Bodzek

Usuwanie mikrozanieczyszczeń estrogenicznych z roztworów wodnych w wysokociśnieniowych procesach membranowych

Spośród wysokociśnieniowych procesów membranowych stosowanych w oczyszczaniu wody, odwrócona osmoza (RO) i nanofiltracja (NF) należą do najskuteczniejszych technik usuwania mikrozanieczyszczeń organicznych [1], co jest szczególnie ważne w przypadku coraz częściej stwierdzanej w wodach powierzchniowych obecności mikrozanieczyszczeń o aktywności estrogenicznej [2]. Zastosowanie procesów membranowych w technologii oczyszczania wody wymaga rozpoznania mechanizmów i czynników, od których zależy skuteczność usuwania mikrozanieczyszczeń.

Mechanizm separacji związku chemicznego w procesach odwróconej osmozy i nanofiltracji oparty jest na zjawiskach rozpuszczania i dyfuzji, przy czym w przypadku zanieczyszczeń hydrofobowych dominuje zjawisko adsorpcji związku na membranie i w strukturach membrany [3]. Stwierdzono również, że duży wpływ na skuteczność usuwania małocząsteczkowych związków organicznych z wody w procesach membranowych mają zjawiska niekorzystne, takie jak polaryzacja stężeniowa, blokowanie membran (fouling) i wytrącanie kamienia membranowego (skaling), spowodowane obecnością w wodzie zarówno związków organicznych, jak i nieorganicznych [4].

Podstawowe czynniki, od których zależy skuteczność usuwania mikrozanieczyszczeń z wody zestawiono w tabeli 1. Spośród właściwości mikrozanieczyszczeń i membran, na skuteczność usuwania zanieczyszczeń (współczynnik retencji) wpływają przede wszystkim masa molowa związku chemicznego i graniczna rozdzielczość membrany (cut-off), chociaż takie parametry, jak geometria cząsteczki związku, rozkład porów membrany oraz hydrofobowość/hydrofilowość usuwanego związku i membrany, powinny być również brane pod uwagę [1].

Cel i metodyka badań

W niniejszej pracy badano wpływ układu filtracji wysokociśnieniowej i warunków operacyjnych procesu na skuteczność usuwania wybranych mikrozanieczyszczeń z roztworów wodnych podczas odwróconej osmozy i nanofiltracji. Filtracji poddano wodę zdejonizowaną i wodę wodociągową (z dodatkiem i bez kwasu humusowego) zawierające związki o aktywności estrogenicznej.

mariusz.dudziak@polsl.pl, michal.bodzek@polsl.pl

Do badań wybrano 8 związków z grupy fitoestrogenów i ksenoestrogenów (tab. 2). Fitoestrogeny wydzielono z próbki wody (200 cm³) stosując ekstrakcję do fazy stałej (SPE) (kolumienki C₁₈ firmy Merck). Złoże kolumienki kondycjonowano metanolem i wodą, a wydzielone związki eluowano metanolem. Po ekstrakcji fitoestrogeny upochodniono do eterów trimetylosililowych z użyciem mieszaniny BSTFA/TMCS/DTE w proporcjach 1000:10:2 (v/v/w). Ksenoestrogeny przed ekstrakcją acylowano w wodzie bezwodnikiem kwasu octowego i wydzielono na drodze ekstrakcji ciecz-ciecz (LLE) z użyciem chlorku metylenu (w stosunku 1:10) w przypadku chlorofenoli, bądź ekstrakcji sorpcyjnej (SBSE) - w przypadku pozostałych fenoli. Do analiz ilościowych wykorzystano chromatograf GC-MS wyposażony w kapilarną kolumnę VF-5ms firmy Varian. Piec kolumny zaprogramowano w zakresie 60÷290°C. Temperatura pułapki jonowej i źródła jonów wynosiła 200 °C, a iniektora 290 °C w przypadku fitoestrogenów oraz 280 °C podczas analizy ksenoestrogenów. Metodyki oznaczania szczegółowo opisano w pracach [5,6].

Przedmiot badań stanowiły roztwory modelowe sporządzone z wody zdejonizowanej i wody wodociągowej (bez i z dodatkiem kwasu humusowego w stężeniu 10gC/m³) oraz wzorców mikrozanieczyszczeń o stężeniach podanych w tabeli 2. Wzorce badanych związków oraz kwasu humusowego pochodziły z firmy Sigma-Aldrich (Poznań, Polska).

W badaniach wykorzystano płaskie membrany firmy Osmonics Inc. (USA), przy czym do odwróconej osmozy zastosowano membranę DS-3-SE, a do nanofiltracji DS-5-DK, które umieszczono w stalowej celi membranowej (objętość 350 cm³) umożliwiającej prowadzenie procesu w układzie filtracji jednokierunkowej (dead-end). Porównawczo przeprowadzono nanofiltrację w układzie skrośnym (cross-flow) z modułem rurowym wyposażonym w membrane AFC-30 firmy PCI Membrane System Inc. (USA). Charakterystykę użytych membran przedstawiono w tabeli 3. Filtrację przeprowadzono pod ciśnieniem transmembranowym 2,0 MPa, a temperatura filtrowanego roztworu wynosiła 20 °C, z wyłączeniem części pracy związanej z badaniami wpływu warunków operacyjnych filtracji na usuwanie mikrozanieczyszczeń. Etap ten przeprowadzono w układzie skrośnym w zakresie zmiennej temperatury nadawy (10÷25 °C), ciśnienia transmembranowego $(1,0\div2,0$ MPa) i liniowej prędkości nadawy $(0,5\div3,4$ m/s).

Skuteczność procesu filtracji określono na podstawie pomiaru strumienia objętości permeatu (J_v , m³/m²s) i współczynnika retencji mikrozanieczyszczeń (R, %).

Dr inż. M. Dudziak, prof. dr hab. inż. M. Bodzek: Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Instytut Inżynierii Wody i Ścieków, ul. S. Konarskiego 18, 44-100 Gliwice

Tabela 1. Czynniki wpływające na skuteczność usuwania mikrozanieczyszczeń w procesach odwróconej osmozy i nanofiltracji Table 1. Factors affecting the efficiency of micropollutant removal by reverse osmosis and nanofiltration

Właściwości mikrozanieczyszczeń	Właściwości membrany	Jakość wody	Warunki operacyjne procesu
Masa molowa związku Geometria cząsteczki Rozpuszczalność w wodzie Polarność/ładunek elektryczny Stała dysocjacji Hydrofilowość/hydrofobowość	Graniczna rozdzielczość membrany Rozmiar porów Hydrofilowość/hydrofobowość Ładunek powierzchniowy membrany	pH Siła jonowa Zawartość związków organicznych Zawartość związków nieorganicznych	Strumień permeatu Prędkość liniowa przepływu wody nad powierzchnią membrany Ciśnienie transmembranowe Temperatura

Tabela 2. Charakterystyka mikrozanieczyszczeń estrogenicznych Table 2. Characteristics of estrogenic micropollutants

Grupa	Związek			Stężenie mg/m ³	
Fitoestrogeny	HO daidzeina (Daid) masa molowa 254 g/mol logK _{ow} =2,55	HO OH Genisteina (Gen) masa molowa 270 g/mol logK _{ow} =2,84		но китеstrol (Кит) masa molowa 268g/mol logK _{ow} =1,57	5
trogeny	HO $\xrightarrow{CH_3}_{H_3C}$ CH ₃ H ₃ C $\xrightarrow{CH_3}_{H_3C}$ CH ₃ 4- <i>tert</i> -oktylofenol (4 <i>t</i> OP) masa molowa 206 g/mol logK _{ow} =5,28	HO-C9H19 4-nonylofenol (4NP) masa molowa 220 g/mol logK _{ow} =5,92		но — СН ₃ — он bisfenol A (BPA masa molowa 228g/mol logK _{ow} =3,32)	40
Ksenoes	OH CI 2,4-dichlorofenol (DCP) masa molowa 163g/mol logK _{ow} =2,80		OH CI CI CI CI CI CI CI CI CI CI CI CI CI		100

Tabela 3. Charakterystyka membran (podana przez producenta) Table 3. Membrane characteristics (as specified by the manufacturer)

Proces	Membrana	Materiał membran	Graniczna rozdzielczość membrany, Da	J _w * m³/m²s	R**, %	
					NaCl	MgSO ₄
RO	DS-3-SE	kompozytowy (poliamidowa warstwa naskórkowa)	-	3,94·10 ⁻⁶	99 (95)	(98)
NF	AFC-30		200	27,6·10 ^{_6}	(58)	(86)
	DS-5-DK		150÷300	23,1·10 ⁻⁶	(41)	98 (96)

*Strumień wody zdejonizowanej wyznaczony podczas wpracowania membrany przy ciśnieniu transmembranowym 2,0 MPa

**Wartości w nawiasach wyznaczono doświadczalnie przy stężeniu soli w wodzie zdejonizowanej 1 g/dm³ i ciśnieniu transmembranowym 2,0 MPa

J_w(J_v)=V/Ft (V – objętość, dm³, F – powierzchnia membrany, m², t – czas filtracji, s); R=(1-c_p/c_n)100 (c – stężenie, mg/m³, p – permeat, n – nadawa)

Dyskusja wyników badań

Zwiększenie stężenia daidzeiny w kolejnych próbkach permeatu podczas procesu nanofiltracji było bardziej intensywne w układzie filtracji jednokierunkowej niż w porównawczo badanym układzie skrośnym (rys. 1). W warunkach zatężania w układzie filtracji jednokierunkowej stężenie usuwanego związku w obrębie membrany wzrastało, a jakość permeatu z czasem filtracji pogarszała się. Było to spowodowane intensyfikacją zjawiska adsorpcji. Uzyskane współczynniki retencji wszystkich badanych mikrozanieczyszczeń były większe w układzie skrośnym (tab. 4), gdzie zjawisko adsorpcji miało mniej intensywny przebieg, niż w porównawczym układzie jednokierunkowym. Nie stwierdzono natomiast wpływu masy molowej związku na jego usuwanie w badanych procesach. Z kolei wraz ze wzrostem hydrofobowości związku wyrażonej wartością logK_{ow} (tab. 2) zwiększał się stopień jego usunięcia.

Tabela 4. Skuteczność usuwania mikrozanieczyszczeń	(R,	%)
Table 4. Estrogenic micropollutants removal efficiency	(R,	%)

Związek*	Odwrócona osmoza (RO) DS-3-SE**	Nanofiltracja (NF)		
		DS-5-DK**	AFC-30***	
Gen	92	71	100	
Kum	86	70	75	
PCP	88	77	78	
Daid	69	68	76	
BPA	85	69	70	
4NP	94	70	98	
4tOP	94	73	94	
DCP	87	94	100	

*Stężenie wyjściowe mikrozanieczyszczeń jak w tab. 1 **Układ jednokierunkowy; ***Układ skrośny (v=3,4 m/s)

Zestawiając wyniki stopnia usunięcia mikrozanieczyszczeń w procesach odwróconej osmozy i nanofiltracji prowadzonych w układzie filtracji jednokierunkowej widać wyraźny wpływ rodzaju procesu membranowego (tab. 4). Zwarta membrana osmotyczna usuwała badane związki w wysokim stopniu (85÷94%), jednakże w przypadku czterech badanych związków większe usunięcie od uzyskanego w procesie odwróconej osmozy odnotowano podczas nanofiltracji prowadzonej w układzie skrośnym, co potwierdziło wpływ rodzaju układu filtracji na skuteczność procesu membranowego. Nanofiltracja wody zdejonizowanej z mikrozanieczyszczeniami w układzie skrośnym wykazała wpływ temperatury, ciśnienia i liniowej prędkości nadawy na wartość współczynnika retencji i wydajność membrany (rys. 2). Wraz ze wzrostem temperatury i ciśnienia procesu stwierdzono zwiększenie wydajności membrany, czemu towarzyszyło zmniejszenie współczynnika retencji daidzeiny. Wynikało to ze zmiany współczynnika lepkości dynamicznej roztworu (efekt ten jest obserwowany podczas oczyszczania roztworów wodnych w procesie odwróconej osmozy). Z kolei wraz ze wzrostem liniowej prędkości nadawy stwierdzono zwiększenie stopnia usunięcia badanego związku (a wydajność procesu była podobna), co było spowodowane ograniczeniem transportu mikrozanieczyszczeń przez membranę w warunkach dużej prędkości nadawy.

Na stopień usunięcia mikrozanieczyszczeń organicznych miała również wpływ obecność kwasów humusowych w roztworach badanych mikrozanieczyszczeń. Współczynnik retencji daidzeiny był największy podczas filtracji wody wodociągowej z dodatkiem kwasu humusowego, jednakże równocześnie stwierdzono najmniejsze wartości strumienia objętości permeatu (rys. 3). Podobną tendencję wykazano w pracy [7], w której badano wpływ substancji organicznych na usuwanie ksenoestrogenów w układzie filtracji jednokierunkowej. Zwiększenie stopnia usuwania mikrozanieczyszczeń estrogenicznych spowodowane było tworzeniem kompleksów naturalne substancje organiczne–mikrozanieczyszczenia estrogeniczne i blokowaniem porów membrany.

Rys. 2. Zaleznosc wspołczynnika retencji daldzelny (Daid) oraz strumienia objętości permeatu od temperatury, cisnienia i liniowej prędkości nadawy (membrana AFC-30, układ skrośny) Fig. 2. Coefficient of daldzelne (Daid) retention and permeate flux related to temperature, pressure and linear velocity of feed flow (AFC-30 membrane, cross-flow mode)

35

retencji daidzeiny (Daid) i strumień objętości permeatu (membrana AFC-30, układ skrośny, ΔP=2,0MPa, v=3,4m/s) Fig. 3. Effect of NOM concentration on daidzeine (Daid) retention coefficient and permeate flux (AFC-30 membrane, cross-flow mode, ΔP=2.0MPa, v=3.4m/s)

Wnioski

◆ Skuteczność usuwania mikrozanieczyszczeń o aktywności estrogenicznej z roztworów wodnych była uzależniona od zastosowanego układu filtracji wysokociśnieniowej i rodzaju procesu membranowego. Większą skuteczność usuwania badanych związków stwierdzono w procesie odwróconej osmozy, przy czym prowadzenie nanofiltracji w układzie skrośnym umożliwiło uzyskanie zbliżonych wyników do procesu osmotycznego prowadzonego w układzie filtracji jednokierunkowej.

Stwierdzono wyraźny wpływ warunków operacyjnych filtracji wysokociśnieniowej na usuwanie mikrozanieczyszczeń i wydajność procesów odwróconej osmozy i nanofiltracji. Zwiększenie temperatury nadawy i ciśnienia transmembranowego spowodowało jednocześnie zwiększenie wydajności, co skutkowało jednak zmniejszeniem

Dudziak, M., Bodzek, M. Removal of Estrogenic Micropollutants from Water Solutions by High-Pressure Driven Membrane Processes. *Ochrona Srodowiska* 2009, Vol. 31, No. 3, pp. 33–36.

Abstract: Model water solutions containing eight compounds chosen from the group of phytoestrogens and xenoestrogens were made subject to reverse osmosis and nanofiltration with the aim of examining how the membrane process and the filtration mode influence the removal of the micropollutants. The retention coefficients for the estrogenic micropollutants were related to the filtration mode (dead-end, cross-flow), the operating parameters of filtration (temperature, transmembrane pressure, linear velocity of feed flow), and the composition of the model solution. It has been demonstrated that the dead-end mode produced stopnia usunięcia małocząsteczkowych związków organicznych. Z kolei wraz ze wzrostem liniowej prędkości nadawy stwierdzono zwiększenie skuteczności usuwania badanych związków.

◆ Wykazano, że skuteczność usuwania mikrozanieczyszczeń estrogenicznych była związana z obecnością naturalnych substancji organicznych w wodzie. Nanofiltracja wody wodociągowej zawierającej kwasy humusowe powodowała intensyfikację blokowania membrany, ale jednocześnie na skutek modyfikacji jej powierzchni zwiększył się stopień usunięcia mikrozanieczyszczeń. Zwiększenie retencji wynikało także z tworzenia kompleksów kwas humusowy-małocząsteczkowy związek organiczny o znacznie większych rozmiarach niż pojedynczy związek.

Praca naukowa została sfinansowana ze środków przeznaczonych na naukę w latach 2007–2010 jako projekt badawczy nr N N523 3071 33 pt. "Usuwanie wybranych estrogennych mikrozanieczyszczeń organicznych ze strumienia wodnego w procesach membranowych".

LITERATURA

- C. BELLONA, J.E. DREWES, P.XU, G.AMY: Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review. *Water Research* 2004, Vol. 38, No. 12, pp. 2795–2809.
- J. LINTELMANN, A. KATAYAMA, N. KURIHARA, L. SHO-RE, A. WENZEL: Endocrine disruptors in the environment. *Pure and Applied Chemistry* 2003, Vol. 75 (5), pp. 631–681.
- 3. M. DUDZIAK, M. BODZEK: Separacja nanofiltracyjna bisfenolu A w warunkach saturacji powierzchni membrany. *Ochrona Środowiska* 2008, vol. 30, nr 2, ss. 17–21.
- M. DUDZIAK, M. BODZEK: Removal of xenoestrogens from water during reverse osmosis and nanofiltration – effect of selected phenomena on separation of organic micropollutants. *ACEE* 2008, Vol. 1 (3), pp. 95–101.
- M. DUDZIAK, M. BODZEK: Usuwanie wybranych estrogennych mikrozanieczyszczeń organicznych ze strumienia wodnego w procesach membranowych. Raport roczny z realizacji projektu badawczego własnego nr N N523 3071 33, Politechnika Śląska, Gliwice 2009 (praca niepublikowana).
- M. DUDZIAK, M. BODZEK: Badania zawartości ksenoestrogenów w wodzie metodą ekstrakcji sorpcyjnej. Ochrona Środowiska 2009, vol. 31, nr 1, ss. 9–14.
- M.DUDZIAK, M.BODZEK: Usuwanie ksenoestrogenów w nanofiltracji: wpływ substancji organicznej. W: Membrany i procesy membranowe w ochronie środowiska [red. K.KO-NIECZNY, M.BODZEK], *Monografie Polskiej Akademii Nauk* 2008, nr 49, ss. 199–206.

higher removal efficiencies during reverse osmosis than during nanofiltration. However, conducted in the crossflow mode, nanofiltration also enabled efficient removal of the micropollutants examined. In the cross-flow mode, the retention of the micropollutants decreased with the rise in temperature and transmembrane pressure, and there was a concomitant increase in the performance of the membrane. The rise in the linear velocity of the feed flow was found to be a factor contributing to the increase in the retention coefficient. An increase in the retention coefficient was also observed under conditions of membrane fouling caused by the presence of humic acid in the water.

Keywords: Estrogenic micropollutants, humic acid, membrane filtration, reverse osmosis, nanofiltration, filtration mode.