Zastosowanie procesu napowietrzania do desorpcji dwutlenku węgla z oczyszczonej wody powierzchniowej na przykładzie wodociągu w Dębicy

Zwiększające się wymagania dotyczące jakości wody wodociągowej spowodowały, że w większości układów oczyszczania wód powierzchniowych niezbędne jest stosowanie ciągłej koagulacji. Proces ten jest w wielu przypadkach prowadzony przy użyciu większych dawek koagulantów niż wymagane do usunięcia zanieczyszczeń i domieszek powodujących mętność wody. [1]. Podczas koagulacji następuje takie naruszenie równowagi węglanowo-wapniowej, w wyniku którego oczyszczona woda nabywa właściwości agresywnych, co powoduje przyspieszenie korozji sieci, instalacji i urządzeń wodociagowych [2]. Produkty korozji przedostaja się do wody, stwarzajac (okresowo lub cịagle) problemy z dotrzymaniem wymaganej jakości wody u odbiorców. Najczęściej dochodzi do przekroczenia dopuszczalnych wartości takich wskaźników jakości wody, jak mętność i barwa oraz zawartość związków żelaza i manganu, a także miedzi.

Zgodnie z rozporządzeniem Ministra Zdrowia z 29 marca 2007 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi [3], woda podawana do sieci powinna być stabilna. Rozporządzenie to nie definiuje jednak wskaźników określajacych stabilność wody, ani nie odwołuje się do innych uregulowań prawnych.

Wprowadzenie w stacji wodociągowej w Dębicy tzw. głębokiej koagulacji spowodowało znaczną korozyjność wody podawanej do sieci, na skutek czego wystąpiła konieczność usuwania agresy wnego dwutlenku węgla z wody [4]. W pracy przeanalizowano możliwości stabilizacji sk ładu chemicznego oczyszczonej wody powierzchniowej, poprzez desorpcje dwutlenku węgla w procesie napowietrzania.

Stabilizacja składu chemicznego wody

Tradycyjna metoda stabilizacji chemicznej, przez dawkowanie wapna w postaci wody lub mleka wapiennego podczas koagulacji, w stacji oczyszczania wody w Dębicy była niemożliwa do zastosowania, ponieważ korekta pH wody do wartości powodującej jej stabilność powodowała znaczne zmniejszenie skuteczności usuwania zanieczyszczeń z wody w procesie koagulacji. Z tego powodu, a także z uwagi na znaczne nakłady potrzebne na urządzenia do wytwarzania i dawkowania wody wapiennej, jak również znane trudności w eksploatacji tych urządzeń (wydzielanie się złogów osadów w przewodach instalacyjnych), odrzucono zastosowanie wapna do

[^0]
Abstract

stabilizacji wody. Również ze względów ekonomicznych i eksploatacyjnych odrzucono metodẹ stabilizacji skladu wody ługiem sodowym, natomiast do dalszych rozważań porównawczych pozostawiono wykorzystanie do tego celu węglanu sodu $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$. Fizyczna metoda stabilizacji składu wody polega na desorpcji agresywnego dwutlenku węgla z wody do powietrza. Proces desorpcji może być realizowany w różnych urządzeniach. Ze względu na najszerszy zakres zastosowania oraz możliwość uzyskania dużej skuteczności usuwania dwutlenku węgla rozważono zastosowanie urzązenia kolumnowego z wypełnieniem i wymuszonym przepływem powietrza. Sposób wymiarowania tego typu urządzeń do desorpcji dwutlenku węgla podano w pracach [5,6]. Dodatkowym argumentem przemawiajacym za zastosowaniem takiego rozwiazania w Dębicy był fakt, że w układzie technologicznym analizowanej stacji oczyszczania wody była możliwość zaadaptowania istniejącego ukladu urzązeń do realizacji desorpcji kolumnowej. Elementami możliwymi do wykorzystania były komory pompowe, pompy oraz nieeksploatowany filtr stalowy o średnicy 3 m . Zastosowanie metody desorpcji dwutlenku węgla z wody porównano z jego chemicznym wiązaniem przy pomocy weglanu sodu.

Charakterystyka jakości wody

Na podstawie wyników analiz ujmowanej wody (pH , temperatura, zasadowość i twardość ogólna, twardość wapniowa, przewodność właściwa, substancje rozpuszczone) wyznaczono korelację pomiędzy zawartością substancji rozpuszczonych i przewodnością właściwa oraz mieddzy twardościa ogólnạ i twardością wapniowa. Pozwoliło to na określenie wartości indeksu nasycenia wody zgodnie z PN-72 C-04609. Indeks nasycenia wody surowej miał zawsze wartoóć dodatnią, co oznaczało brak agresywności tej wody. Z nomogramu do obliczania form dwutlenku węgla w zależności od pH i zasadowości ogólnej wynikało, że w wodzie surowej nie ma agresywnego dwutlenku węgla. Taka sytuacja była spowodowana tym, że woda do pompowni jest transportowana lewarem, w którym następuje częściowe odgazowanie wody. Przyjeto, że zawartość agresywnego dwutlenku wẹgla w wodzie surowej wynosi zero. Przyrost agresywnego dwutlenku wegla w wodzie po koagulacji spowodowany jest zmniejszeniem zasadowości wody w wyniku hydrolizy koagulantu i zależy od rodzaju koagulantu oraz jego dawki. W stacji oczyszczania wody w Dębicy do koagulacji stosowany jest siarczan glinu oraz wysoko zhydrolizowany polimer glinowy. Reagenty te
są stosowane oddzielnie lub wspólnie. Wspólne zastosowanie obu środków następuje w przypadku wody o zwiększonej mętności i intensywności barwy. Maksymalne zmniejszenie zasadowości ogólnej wody wynosi obecnie $0,25 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$. Na podstawie analizy rozkładu wartości zasadowości wody surowej wyznaczono zasadowość średnią - $160 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$, przy czym około 3% ogólnej liczby pomiarów w ciaggu roku mieściło w przedziale wartości $75 \div 115 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$, a $1,5 \%$ w przedziale $90 \div 105 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$. Najniższe wartości występowały w okresie intensywnych roztopów oraz przy stanach powodziowych w rzece. Woda charakteryzowała się wówczas dużą mętnością oraz temperaturą około $5^{\circ} \mathrm{C}$. Są to warunki ekstremalne do prowadzenia procesu desorpcji. Zasadowość wody po koagulacji mieści się w przedziale $45 \div 85 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$. Zawartość przynależnego dwutlenku węgla, odpowiadająca zasadowości ujmowanej wody $90 \div 105 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$ ($1,5 \%$ pomiarów), wynosiła $1 \div 2 \mathrm{gCO}_{2} / \mathrm{m}^{3}$. Taka zawartość końcowa dwutlenku węgla w wodzie może wystąpić w warunkach najbardziej niekorzystnych do prowadzenia procesu desorpcji.

Założenia projektowe

Podstawowym zagadnieniem projektowym było określenie wysokości złoża w kolumnie desorpcyjnej [6,7]. Założono, że wypełnieniem kolumny będą pierścienie Białeckiego o wymiarach $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 3 \mathrm{~mm}$, wykonane z polipropylenu. Przyjęto następujące parametry projektowe: maksymalna wydajność stacji oczyszczania wody $-650 \mathrm{~m}^{3} / \mathrm{h}$, powierzchnia przekroju adaptowanej kolumny $-7 \mathrm{~m}^{2}$, gęstość zraszania $-93 \mathrm{~m}^{3} / \mathrm{m}^{2} \mathrm{~h}$, zawartość początkowa dwutlenku węgla w wodzie $-25 \mathrm{gCO}_{2} / \mathrm{m}^{3}$, założona zawartość końcowa $-1,0 \mathrm{gCO}_{2} / \mathrm{m}^{3}$. W tabeli 1 przedstawiono wysokości wypełnienia przy różnej końcowej zawartości dwutlenku węgla i różnym stosunku objętościowych powietrza do wody. Na podstawie uzyskanych wyników można stwierdzić, że wysokosć wypełnienia w warunkach ekstremalnych powinna wynosić ok. $1,4 \mathrm{~m}$, a przy założeniu końcowej zasadowości wody około $100 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$ niezbędna wysokość wypełnienia zmniejsza się do ok. $0,8 \mathrm{~m}$. Ponieważ zasadowość wody mniejsza od $100 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$ może wystąpić średnio tylko przez ok. 11 dni w roku (3% pomiarów), przyjęto wysokość wypełnienia pierścieniami równą $0,8 \mathrm{~m}$. Wynika stąd, że średnio w ciągu 11 dni w roku maksymalna zawartość agresywnego dwutlenku węgla w wodzie będzie wynosiła około $1 \mathrm{gCO}_{2} / \mathrm{m}^{3}$.

Porównanie chemicznej i fizycznej metody stabilizacji składu wody

Objętośc zbiorników do rozpuszczania i magazynowania roztworu węglanu sodu byłaby porównywalna z objętością kolumny desorpcyjnej. Metoda chemiczna wymagalaby zastosowania urządzeń mechanicznych w postaci mieszadła i pompy dawkującej ze sterownikiem, natomiast metoda fizyczna wymaga zastosowania jedynie pompy podnoszącej wodę na kolumnę oraz wentylatora.

Urzadzenia do rozpuszczania, magazynowania i dawkowania węglanu sodu muszą być usytuowane w pomieszczeniu zamkniętym. Konieczne jest wybudowanie pomieszczenia ogrzewanego. Kolumna desporpcyjna po ociepleniu mogłaby stać na wolnym powietrzu. Konieczna byłaby budowa komory pompowej z systemem połączeń z obecnym układem przepływowym stacji.

Tabela 1. Wymagana wysokość wypetnienia desorbera w zależności od założonej zawartości dwutlenku węgla, temperatury wody oraz stosunku objętościowego powietrze/woda

Zasadowość, $\mathrm{gCaCO}_{3} / \mathrm{m}^{3}$	75			100			
Zawartość końcowa dwutlenku węgla, $\mathrm{gCO}_{2} / \mathrm{m}^{3}$	1,0			2,0			
Powietrze/woda	4	6	8	4	6	8	
Wysokość wypetn., m	temp. $4^{\circ} \mathrm{C}$	1,32	1,10	1,08	0,92	0,80	0,78
	temp. $10^{\circ} \mathrm{C}$	0,72	0,60	0,59	0,50	0,44	0,43

Obie metody wymagaja pomiaru pH wody po procesie. W metodzie chemicznej dodatkowym elementem jest regulator sterujacy praca pompy dawkujacej. W metodzie fizycznej konieczny jest pomiar poziomu wody w komorze pompowej. Sterowanie natężeniem przepływu strumieni będzie realizowane przez regulatory znajdujące się w przemiennikach częstotliwości zasilających pompę i wentylator.

W metodzie chemicznej konieczne jest obsługa urządzeń do rozpuszczania węglanu sodu oraz jego magazynowanie, natomiast urządzenie do desorpcji nie wymaga obsługi.

Oceniając ekonomikęobu procesów założono, że średnia ilość usuwanego dwutlenku węgla z wody wynosi $15 \mathrm{mgCO} \mathrm{C}_{2} / \mathrm{m}^{3}$. Do chemicznego związania 1 kg CO 2 potrzeba około $1,7 \mathrm{~kg} \mathrm{Na} 2 \mathrm{CO}_{3}$. Usunięcie tej samej ilości CO_{2} metodą desorpcji wymaga zużycia energii około $0,75 \mathrm{kWh}$. Zakładając koszt zakupu i dostawy węglanu sodu około $0,9 \mathrm{zt} / \mathrm{kgNa}_{2} \mathrm{CO}_{3}$, koszt usunięcia $1 \mathrm{~kg} \mathrm{CO}_{2}$ wyniesie ok. $1,5 \mathrm{zl}$. Przy cenie zakupu energii około $0,25 \mathrm{zt} / \mathrm{kWh}$ koszt usunięcia $1 \mathrm{~kg} \mathrm{CO}_{2}$ wyniesie $0,20 \mathrm{zl}$. Przy średniej produkcji dobowej wody 10 tys. $\mathrm{m}^{3} / \mathrm{d}$, rocznie koszty związane z przeprowadzeniem stabilizacji wody metodą chemiczną wyniosą około 50 tys. zt, natomiast metoda fizyczną około 11 tys. zł.

Dodatkową korzyścią wynikającą z zastosowania napowietrzania wody do desorpcji dwutlenku węgla jest usunięcie substancji powodujacych zapach wody oraz innych lotnych substancji, jak np. chloroformu. W kolumnach tego typu można również usuwać z powietrza ozon resztkowy. Odpowiednio zaprojektowana kolumna desorpcyjna może służyć również do wprowadzania ozonu do wody.

Adaptacja filtru i sterowanie procesem desorpcji

Zaadaptowany zbiornik filtracyjny od wewnątrz wypiaskowano oraz usunięto dysze z jego dna. Powierzchnia otworów w dnie była wystarczajaca do swobodnego przepływu wody. Króciec włazowy w górnej części zbiornika wykorzystano do połączenia z kominkiem na dachu odprowadzającym powietrze. Drugi króciec włazowy z boku filtru posłużył do wprowadzenia powietrza przy pomocy rury perforowanej. Na dnie sitowym zbiornika umieszczono pierścienie Białeckiego o wymiarach $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 4 \mathrm{~mm}$, wykonane z polipropylenu. Wysokość wypełnienia została tak dobrana, aby pierścienie znajdowały się $0,1 \mathrm{~m}$ powyżej rury perforowanej wprowadzającej powietrze do kolumny. Zadaniem tej warstwy pierścieni jest podtrzymanie właściwego wypełnienia pierścieniami Białeckiego o wymiarach $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 3 \mathrm{~mm}$ i wysokości $0,8 \mathrm{~m}$. Na właściwe złoże nasypano warstwę pierścieni Bialeckiego o wymiarach $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 4 \mathrm{~mm}$ o wysokosci $0,5 \mathrm{~m}$, której zadaniem było równomierne rozprowadzenie wody na powierzchni złoża (rys. 1). Nad tą warstwą umieszczono ruszt rozprowadzający złożony z rury centralnej

Rys. 1. Schemat desorbera dwutlenku węgla
o średnicy 400 mm oraz sześciu perforowanych ramion. Ruszt połączono z rurociągiem doprowadzającym wodę o średnicy 400 mm . Zwiększono średnicę króćca spustowego do 400 mm i połączono go z odprowadzeniem wody do zbiornika wody czystej.

Wydajność stacji oczyszczania wody zmienia się w zakresie $150 \div 650 \mathrm{~m}^{3} / \mathrm{h}$. Wydajność pomp podających wodę do desorbera sterowana jest przez zmianę częstotliwości prądu zasilajacego pompy. Układ sterowania sklada się z pomiaru wysokości wody w zbiorniku pompowym - sygnał z urządzenia podawany jest do sterownika falownika. Program sterownika zmienia wydajność pomp w celu utrzymania stałej wysokości wody w zbiorniku pompowym. Układ sterowania jakością wody składa się z pomiaru pH wody po kolumnie desorpcyjnej - sygnał z urządzenia podawany jest do sterownika falownika. Program sterownika dostosowuje natężenie przepływu powietrza do zadanego pH wody. Zmiana natężenia przepływu powietrza realizowana jest przez zmianę częstotliwości prądu zasilającego wentylator. Zadawane pH wody (pH nasycenia) określane jest na podstawie analizy wody zgodnie z PN-72 C-04609.

Podsumowanie

Przedstawione w tabeli 2 wartości indeksu nasycenia wskazuja, że - zgodnie z przewidywaniami - przy niskiej temperaturze oraz zasadowości wody mniejszej od $100 \mathrm{gCaCO}_{3} / \mathrm{m}^{3}$ układ nie ma możliwości usunięcia dwutlenku węgla do wartości zapewniającej uzyskanie pH nasycenia. Przeprowadzona analiza porównawcza metod stabilizacji składu wody oczyszczonej w procesach koagulacji i filtracji wykazała, że lepszym rozwiązaniem było zastosowanie metody desorpcji dwutlenku węgla przy użyciu wysokoefektywnego wypełnienia, niż metody chemicznej opartej na jego wiązaniu węglanem sodu. Rozwiązania przyjẹte w trakcie adaptacji kolumny filtracyjnej, takie jak wprowadzenie powietrza do warstwy wypełnienia o dużym rozmiarze, rozprowadzenie wody na calą powierzchnię poprzez zastosowanie wypełnienia w postaci pierścieni Białeckiego spełniły swoja funkcję. Zgodnie z obliczeniami projektowymi, niecałkowite spełnienie wymogów dotyczących stabilizacji składu wody miało miejsce dwukrotnie w 2006 r., gdy wystąpiły wody powodziowe o mętnosci w zakresie $2000 \div 3000$ NTU, wymagających stosowania dużych dawek reagentów w procesie koagulacji. Dotychczasowe doświadczenia eksploatacyjne stacji oczyszczania wody w Dębicy wykazały, że metodę desorpcji dwutlenku węgla można stosować do stabilizacji agresywnych wód powierzchniowych.

LITERATURA

1. W. ZYMON: Wplyw warunków hydrolizy soli glinu na efekty procesu koagulacji w uzdatnianiu wód. Wydawnictwo Politechniki Krakowskiej. Monografia 313, Kraków 2004.
2. M. ŚWIDERSKA-BRÓŻ, M. WOLSKA: Korozyjność wody wodociagowej a zjawiska zachodzace w systemie dystrybucji. Gaz Woda i Technika Sanitarna, 2003, nr 1, ss. 10-15(21).
3. Rozporzadzenie Ministra Zdrowia z 29 marca 2007 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi. DzU nr 61, poz. 417.
4. W. ZYMON: Badania wraz z analizami technicznymi usuwania agresywnego dwutlenku wẹgla i innych lotnych substancji z wody przy zastosowaniu desorpcji powietrzem na stacji uzdatniania wody w Dębicy przy ul. Kwiatkowskiego 4. Politechnika Krakowska, Instytut Zaopatrzenia w Wodę i Ochrony Środowiska, Kraków 2004 (praca niepublikowana).

Tabela 2. Zestawienie wskaźników jakości wody surowej z indeksami nasycenia,
przy których nie osiagnięto stabilizacji składu wody

Data	Temperatura wody ${ }^{\circ} \mathrm{C}$	Zasadowóś wody pofiltracji ${\text { gCaCO } / \mathrm{m}^{3}}$	Indeks nasycenia przed desorpcja	Indeks nasycenia po desorpcji
$03-03-2006$	9,3	70,0	$-1,06$	$-0,33$
$24-03-2006$	5,9	85,0	$-1,18$	$-0,31$
$29-03-2006$	6,0	65,0	$-1,24$	$-0,30$
$30-03-2006$	7,0	62,0	$-1,42$	$-0,32$
$31-03-2006$	9,4	50,0	$-1,68$	$-0,42$
$02-06-2006$	12,5	70,0	$-1,45$	$-0,35$
$05-06-2006$	12,5	42,5	$-2,37$	$-0,82$
$06-06-2006$	12,0	45,0	$-1,71$	$-0,42$
$07-06-2006$	13,0	85,0	$-1,22$	$-0,12$

5. W. ZYMON, A. BIELSKI: Projektowanie kolumnowych desorberow dwutlenku wegla z wody. Gaz Woda i Technika Sanitarna, 1990, nr 8, ss. 151-154.
6. W. ZYMON, A. BIELSKI: Analiza możliwości stabilizacji agresywnych wód powierzchniowych. Ochrona Środowiska, 1991, nr 2, ss. 25-28.

Zymon, W. The Use of the Aeration Process for the Desorption of Carbon Dioxide from Surface Water: A Case Study. Ochrona Środowiska 2007, Vol. 29, No. 4, pp. 65-68.

Abstract: With the Waterworks of Debica as a case in point, the paper addresses the problem of stabilizing the chemical composition of the water whose aggressive character is attributable to the high coagulant doses applied in the course of the treatment process. Two methods for the removal of aggressive carbon dioxide, a chemical one (dosage of sodium carbonate) and a physical one (aeration), were made subject to analysis in view of their efficiencies. Taking into account the efficiencies of the two processes and the operating conditions at the water
treatment station, the method of carbon dioxide desorption (with air in a column desorber packed with Bialecki rings) was chosen. Upon setting the desired quality of the treated water, the basic design parameters of the desorption column for carbon dioxide removal were determined. It was also shown how to adapt an idle filter column in order to make it act as a desorber. The analysis of a one-year operation of the unit for carbon dioxide removal from water at the Waterworks of Debica has substantiated the efficiency of the design adopted.

Keywords: Aggressive carbon dioxide, aeration, desorption, chemical stability of water.

[^0]: Dr inż. W. Zymon: Politechnika Krakowska, Instytut Zaopatrzenia w Wodẹ i Ochrony Środowiska, ul. Warszawska 24, 31-155 Kraków
 wzymon@vistula.wis.pk.edu.pl

