Marek Mołczan

Wpływ procesu wymiany anionowej na zmianę jakości wody charakteryzowanej wartościami absorbancji właściwej (SUVA) i barwy właściwej (SCOA)

Potrzeba usuwania zanieczyszczeń i domieszek organicznych z wody uwarunkowana jest wplywem tych substancji na tworzenie ubocznych produktów utleniania/dezynfekcji (UPU/UPD). Pokaźna grupa tych substancji organicznych stanowi wysoce niepożądany składnik wody kierowanej do sieci wodociągowej, z uwagi na potencjalne zagrożenie zdrowia jej konsumentów.

Z punktu widzenia ograniczania ryzyka, związanego ze zdrowotnym oddziaływaniem produktów utleniania substancji organicznych, znaczenie ma nie tylko obniżenie ilości zawartych w wodzie związków węgla, ale również ukierunkowanie procesów oczyszczania na selektywne usuwanie substancji będących prekursorami UPU/UPD. Wskaźnikiem potencjalnej reaktywności substancji organicznych wobec utleniaczy może być zdolność absorpcji promieniowania w zakresie nadfioletu (absorbancja w UV) [1], która wskazuje na obecność w ich strukturze aktywowanych pierścieni aromatycznych oraz nienasyconych wiązań podwójnych [2-5]. Standardowo wykorzystuje się w tym celu pomiary absorbancji w nadfiolecie przy długości fali 254 nm [1]. Zageszczenie cech substancji organicznych związanych z ich potencjalną reaktywnością mierzone jest za pomoca absorbancji właściwej w nadfiolecie (SUVA - Specific UV Absobance) [6]. Wskaźnik ten definiowany jest jako wartość absorbancji w UV odniesiona do jednego grama rozpuszczonego węgla organicznego (RWO) w metrze sześciennym wody [7], a jej jednostka jest $\mathrm{m}^{2} / \mathrm{gC}$ [6]. W pracy symbolem SUVA oznaczono absorbancję właściwą przy długości fali 254 nm , oznaczaną zwykle symbolem SUVA 254 .

Wartośc SUVA, zwłaszeza gdy dotyczy wody surowej, może być interpretowana na wiele sposobów [6]:

- jako wskaźnik opisujący właściwości rozpuszczonych substancji organicznych zawartych w wodzie,
- jako wskaźnik reaktywności RWO, dobrze korelujacy z tworzeniem UPU/UPD,
- jako wskaźnik opisujący podatność RWO na usuwanie metodą koagulacji,
- jako element uregulowań formalnoprawnych związanych z regułami stosowania technik oczyszczania wody.

Polskie przepisy nie przewidują ograniczania wartości absorbancji w UV 254 ani SUVA w wodzie przeznaczonej do spożycia przez ludzi [8]. Spośród zbiorczych wskaźników zanieczyszczenia wody związkami organicznymi ograniczone są tylko wartości utlenialności (z KMnO4) i intensywności barwy, a od niedawna także zawartość ogólnego węgla organicznego

[^0](OWO), którego głównym składnikiem jest przeważnie RWO. Nie zmienia to faktu, że absorbancja właściwa może odgrywać ważną rolę jako wskaźnik służący do oceny jakościowej skuteczności procesów oczyszczania wody związanych z usuwaniem zanieczyszczeń organicznych.

Analogicznie do absorbancji właściwej definiowana jest barwa właściwa (SCOA - Specific Colour Absorbance). Jest to wartość absorbancji lub intensywności barwy odniesiona do jednego grama rozpuszczonego węgla organicznego (RWO) w metrze sześciennym wody, a jej jednostka jest $\mathrm{m}^{2} / \mathrm{gC}$, w wypadku absorbancji, lub gPt/gC, w wypadku intensywności barwy [6]. Intensywność barwy oceniana jest w skali wzorców platynowych [9]. Jej przeniesienie do pomiarów spektrofotometrycznych nie daje charakterystycznego maksimum, dlatego spotyka się różne długości fali wykorzysty wane w pomiarach. Najczęściej są to 400 nm lub 436 nm [10], ale także 350 nm , gdzie skala wzorców platynowych daje liniowy związek z absorbancją w szerokim zakresie wartości. Istotną cechą barwy jest to, że zalicza się do grupy nielicznych wskaźników postrzeganych organoleptycznie, a zatem łatwo ocenianych przez odbiorców wody.

Zarówno barwa, jak i absorbancja w nadfiolecie sa wskaźnikami charakteryzujacymi jakościowo zawarte w wodzie substancje organiczne. Intensywność barwy w przypadku wody przeznaczonej do spożycia jest ograniczona do $15 \mathrm{gPt} / \mathrm{m}^{3}$ [8]. Wartosć absorbancji w UV 254 nie jest ograniczona, niemniej jej związek z tworzeniem UPU/UPD czyni z niej istotny wskaźnik służący do oceny skutecznosci procesów oczyszczania wody. Wartości absorbancji oraz barwy wlaściwej pozwalaja na ocenę selektywności procesów oczyszczania wody pod kątem usuwania organicznych zanieczyszczeń barwnych (których zawartość jest ograniczona) oraz reaktywnych (których zawartość jest ograniczana pośrednio, np. poprzez określenie maksymalnej zawartości THM czy HAA, dawki srodka dezynfekującego, itp.).

Jednym z procesów zdolnych do selektywnego usuwania substancji organicznych, cechujacych się wysokimi wartościami absorbancji oraz barwy właściwej, badanych w ostatnich latach pod katem wykorzystania w oczyszczaniu wody jest wymiana anionowa z wykorzystaniem magnetyzowanych żywic drobnoziarnistych o nazwie MIEX ${ }^{\circledR}$ (Magnetized Ion Exchange resin) [11]. Bazujacy na tym produkcie proces usuwania zanieczyszczeń organicznych o nazwie MIEX ${ }^{\circledR}$ DOC wykorzystuje obecność anionowych grup funkcyjnych w większości substancji organicznych występujących w wodach naturalnych [12]. Ilościowa ocena zdolności metody do usuwania substancji oznaczanych jako RWO stawia proces MIEX ${ }^{(\otimes 1}$ DOC w jednym rzędzie z tak skutecznymi metodami,
jak np. adsorpcja na węglu aktywnym [13]. Podjęte w niniejszej pracy zagadnienie oceny skuteczności usuwania substancji organicznych z wody od strony jakościowej daje wynik równie pozytywny.

Materiały i metody

Badania wpływu procesu wymiany anionowej na zmiany jakościowe domieszek organicznych wody, charakteryzowane wartosciami absorbancji i barwy właściwej (SUVA i SCOA), przeprowadzono w oparciu o zmieszane wody powierzchniowe pochodzące z Oławy i Nysy Kłodzkiej, ujmowane przez Zakład Produkcji Wody Mokry Dwór we Wrocławiu, który jest źródłem wody dla około 40% mieszkańców miasta. Woda zasilająca ZPW, pochodząca z ujęcia Czechnica, cechuje się przeciętnym - jak na wodępowierzchniową - zanieczyszczeniem organicznym. W wyrywkowych badaniach PIOŚ w 2006 r. odnotowano średnią zawartość ogólnego węgla organicznego (OWO) wynosząca $5,89 \mathrm{gClm}^{3}$ ($\mathrm{min} .4,13 \mathrm{gC} \mathrm{m}^{3}$, maks. $9,10 \mathrm{gC} / \mathrm{m}^{3}$) [14,15]. Oczyszczanie wody przebiega obecnie w następujacym ciagu technologicznym: koagulacja-sedymentacja-filtracja pospieszna-ozonowanie-adsorpcja (biosorpcja)-dezynfekcja. W badaniach wykorzystano typową procedurę naczyniowego testu kinetycznego [16], polegającego na kontakcie badanej wody z żywicą anionowymienną w określonych warunkach dawek żywicy i czasów kontaktu. W badaniach wstępnych określono optymalną dawkę żywicy, która wynosiła $10 \mathrm{~cm}^{3} / \mathrm{dm}^{3}$. W dalszych badaniach posługiwano się dawką optymalną. Próbki wody pobrano po czasach kontaktu: 2 min, $4 \mathrm{~min}, 7 \mathrm{~min}, 10 \mathrm{~min}, 15 \mathrm{~min}, 25 \mathrm{mini} 40 \mathrm{~min}$. Przy ustalonej dawce żywicy wynikiem testu kinetycznego procesu MIEX ${ }^{\circledR}$ DOC jest zależność pozostałej zawartości usuwanego substratu (c_{e}) od czasu kontaktu (t), którą dobrze przybliża funkcja wykładnicza o równaniu (rys. 1) [17]:

$$
\begin{equation*}
c_{e}=c_{\infty}+c_{u} e^{-\tau / \tau} \tag{1}
\end{equation*}
$$

w którym:
c_{e} - pozostała zawartość substratu procesu, $\mathrm{g} / \mathrm{m}^{3}$
c_{∞} - pozostała zawartosć substratu niemożliwa do usunięcia, $\mathrm{g} / \mathrm{m}^{3}$
c_{u} - usunięta zawartość substratu, $\mathrm{g} / \mathrm{m}^{3}$
t - czas kontaktu, min
τ - stała czasowa usuwania substratu (czas, po którym usunięto
[1-1/e]c c_{u}, czyli ok. $0,63 c_{u}$), min
e - liczba Eulera (e=2,718281...)
przy czym całkowita zawartość substratu w badanej wodzie ($\mathrm{c}_{0}, \mathrm{~g} / \mathrm{m}^{3}$) jest określona zależnością:

$$
\begin{equation*}
c_{o}=c_{\infty}+c_{u} \tag{2}
\end{equation*}
$$

Powyższe zależności wykorzystano do analizy zmian wartości poszczególnych wskaźników zanieczyszczenia wody związkami organicznymi (RWO, absorbancja w UV 254 , intensywność barwy) w teście kinetycznym, a mianowicie:

$$
\begin{gather*}
\mathrm{RWO}_{\mathrm{e}}=\mathrm{RWO}_{\infty}+\mathrm{RWO}_{\mathrm{u}} \mathrm{e}^{-\mathrm{t} / \tau} \tag{3}\\
\mathrm{RWO}_{0}=\mathrm{RWO}_{\infty}+\mathrm{RWO}_{\mathrm{u}} \tag{4}
\end{gather*}
$$

w których:
$\mathrm{RWO}_{\mathrm{e}}$ - pozostała zawartość RWO, $\mathrm{gC} / \mathrm{m}^{3}$
RWO ∞_{∞} - pozostała zawartosć RWO przy nieskończenie długim czasie kontaktu, $\mathrm{gC} / \mathrm{m}^{3}$

Rys. 1. Interpretacja wyników testu kinetycznego procesu MIEX ${ }^{\text {® }}$ DOC
$\mathrm{RWO}_{\mathrm{u}}$ - usunięta zawartość RWO, $\mathrm{gC} / \mathrm{m}^{3}$
$R W O_{0}$ - zawartość RWO w wodzie surowej, $\mathrm{gC} / \mathrm{m}^{3}$

$$
\begin{gather*}
U V_{e}=U V_{\infty}+U V_{u} e^{-t / \tau} \tag{5}\\
U V_{e}=U V_{\infty}+U V_{u} \tag{6}
\end{gather*}
$$

w których:
UV_{e} - wartość absorbancji w UV254 nm po kontakcie z żywica anionowymienna
UV ${ }_{\infty}$ - wartość pozostałej absorbancji w UV ${ }_{254}^{1} \mathrm{~nm}$ przy nieskończenie długim czasie kontaktu
$U V_{u}$ - zmniejszenie wartości absorbancji w UV 254 mm
$U V_{0}$ - wartość absorbancji w UV 254 nm wody surowej

$$
\begin{gather*}
\mathrm{IB}_{\mathrm{e}}=\mathrm{IB}_{\infty}+\mathrm{IB}_{\mathrm{u}} \mathrm{e}^{-\mathrm{t} / \tau} \tag{7}\\
\mathrm{IB}_{0}=\mathrm{IB}_{\infty}+\mathrm{IB}_{\mathrm{u}} \tag{8}
\end{gather*}
$$

w których:
IB_{e} - intensywność barwy wody po kontakcie z żywicą anionowymienna, $\mathrm{gPt} / \mathrm{m}^{3}$
IB_{∞} - wartość pozostałej intensywności barwy wody przy nieskończenie długim czasie kontaktu, $\mathrm{gPt} / \mathrm{m}^{3}$
IB_{u} - zmniejszenie intensywności barwy, $\mathrm{gPt} / \mathrm{m}^{3}$
IB_{o} - intensywnosé barwy wody surowej, $\mathrm{gPt} / \mathrm{m}^{3}$
Z uwagi na brak standardu długości fali przy spektrofotometrycznym pomiarze intensywności barwy, otrzymane wyniki podano w jednostce skali wzorców platynowych, która jest niezależna od stosowanej w pomiarach długości fali. Stąd również wartości wskaźnika SCOA wyrażono nietypowo, bo za pomoca jednostki gPt/gC, której użycie uzasadnione jest również jednostkami, w których wyraża się wartość intensywności barwy ($\mathrm{gPt} / \mathrm{m}^{3}$) oraz zawartość węgla organicznego $\left(\mathrm{gC} / \mathrm{m}^{3}\right)$. Proponuje się również, aby wartość barwy właściwej, wyrażonej w gPt/gC i nie związanej bezpośrednio z absorbancją i długością fali, oznaczać symbolem SCOA (w odróżnieniu od np. $\mathrm{SCOA}_{350}, \mathrm{SCOA}_{400}, \mathrm{SCOA}_{436}$ itp. wyrażanych $w \mathrm{~m}^{2} / \mathrm{gC}$), z pominięciem indeksu wskazujacego na długość fali, przy której wykonano pomiary.

Wartość absorbancji właściwej (SUVA) obliczono na podstawie danych aproksymowanych zależnościami (3) i (4) oraz (5) i (6), tzn.:

$$
\begin{gather*}
\mathrm{SUVA}_{\mathrm{e}}=\frac{\mathrm{UV}_{\mathrm{e}}}{\mathrm{RWO}_{e}}=\frac{\mathrm{UV}_{\infty}++\mathrm{UV}_{\mathrm{u}} \mathrm{e}^{-\mathrm{t} / \tau}}{R W O_{\infty}+\mathrm{RWO}_{\mathrm{u}} \mathrm{e}^{-\mathrm{V} \tau}} \tag{9}\\
\mathrm{SUVA}_{0}=\frac{\mathrm{UV}_{0}}{\mathrm{RWO}_{0}} \tag{10}
\end{gather*}
$$

$$
\begin{align*}
& \text { SUVA }_{\infty}=\frac{U V_{\infty}}{\mathrm{RWO}_{\infty}} \tag{11}\\
& \mathrm{SUVA}_{\mathrm{u}}=\frac{\mathrm{UV}_{\mathrm{u}}}{\mathrm{RWO}_{\mathrm{u}}} \tag{12}
\end{align*}
$$

w których:
SUVA $_{e}$ - absorbancja właściwa wody po kontakcie z żywica anionowymienna, $\mathrm{m}^{2} / \mathrm{gC}$
SUVA $_{0}$ - absorbancja właściwa wody surowej, $\mathrm{m}^{2} / \mathrm{gC}$
SUVA $_{\infty}$ - absorbancja właściwa frakcji RWO nieusuwanej w wymianie anionowej, $\mathrm{m}^{2} / \mathrm{gC}$
SUVA $_{u}$ - absorbancja właściwa frakcji RWO usuwanej w wymianie anionowej, $\mathrm{m}^{2} / \mathrm{gC}$
Wartość barwy własciwej (SCOA) obliczono na podstawie danych aproksymowanych zależnościami (3) i (4) oraz (7) i (8), tzn.:

$$
\begin{gather*}
\mathrm{SCOA}_{\mathrm{e}}=\frac{\mathrm{IB}_{\mathrm{e}}}{\mathrm{RWO}_{\mathrm{e}}}=\frac{\mathrm{IB}_{\infty}+\mathrm{IB}_{\mathrm{u}} \mathrm{e}^{-t / \tau}}{\mathrm{RWO}_{\infty}+\mathrm{RWO}_{\mathrm{u}} \mathrm{e}^{-t / \tau}} \tag{13}\\
\mathrm{SCOA}_{0}=\frac{\mathrm{IB}_{o}}{\mathrm{RWO}_{0}} \tag{14}\\
\mathrm{SCOA}_{\infty}=\frac{\mathrm{IB}_{\infty}}{\mathrm{RWO}_{\infty}} \tag{15}\\
\mathrm{SCOA}_{\mathrm{u}}=\frac{\mathrm{IB}_{\mathrm{u}}}{\mathrm{RWO}_{\mathrm{u}}} \tag{16}
\end{gather*}
$$

w których:
$\mathrm{SCOA}_{\mathrm{e}}$ - barwa właściwa wody po kontakcie z żywicą anionowymienna, gPt/gC
SCOA_{0} - barwa właściwa wody surowej, gPt/gC
SCOA $_{\infty}$ - barwa właściwa frakcji RWO nieusuwanej w wymianie anionowej, gPt/gC
SCOA_{u} - barwa właściwa frakcji RWO usuwanej w wymianie anionowej, gPt/gC

W celu liczbowego określenia selektywności procesu wymiany anionowej w usuwaniu substancji organicznych wplywających na wartości SUVA i SCOA obliczono również wartości wskaźników:

$$
\begin{equation*}
\frac{\text { SUVA }_{u}}{\text { SUVA }_{o}} \tag{17}
\end{equation*}
$$

oraz

$$
\begin{equation*}
\frac{\mathrm{SCOA}_{u}}{\mathrm{SCO}} \tag{18}
\end{equation*}
$$

które wskazują na preferencyjne usuwanie substancji organicznych wykazujących absorbancje w UV 254 lub barwę, gdy są wyższe od jedności. Im większa jest różnica pomiędzy wskaźnikami (17) lub (18) a 1 , tym większa jest selektywność metody. Podobnie, gdy wartości wskaźników:

$$
\begin{equation*}
\frac{\text { SUVA }_{\infty}}{\text { SUVA }_{o}} \tag{19}
\end{equation*}
$$

oraz

$$
\begin{equation*}
\frac{\mathrm{SCOA}_{\infty}}{\mathrm{SCO}} \tag{20}
\end{equation*}
$$

są niższe od 1,0 , to woda oczyszczona cechuje się niższą zawartością substancji wykazujących absorbancję w UV 254 lub barwę niż woda surowa. Selektywność metody jest tym większa, im większa jest różnica między 1 a wartością wskaźników (10) lub (20).

Zakres analiz fizyczno-chemicznych obejmowal oznaczenia takich wskaźników zanieczyszczenia organicznego wody, jak ogolny oraz rozpuszczony węgiel organiczny (OWO, RWO), intensywność barwy (IB) oraz absorbancja w UV 254 nm (UV). Wszystkie oznaczenia, poza OWO, dotyczyły frakcji rozpuszczonej, co pociągało za sobą konieczność filtracji próbek wody przez sączek membranowy $0,45 \mu \mathrm{~m}$. Do analiz użyto analizator TOC 5050 Shimadzu oraz spektrofotometr UV-VIS 1240 Shimadzu. Spektrofotometryczny pomiar barwy prowadzono przy długości fali 350 nm , przy której wykonano krzywa wzorcową odniesiona do skali wzorców platynowych. Przy pomiarach absorbancji w UV oraz intensywności barwy korzystano z kuwet z kwarcu ES o długości drogi świetlnej 3 cm .

Wodę do badań pobrano sześciokrotnie, pomiędzy 27 lutego a 24 kwietnia 2006 r., przed, w trakcie i po splywie wód roztopowych. Charakterystykę próbek wody wykorzystanych w badaniach zestawiono w tabeli 1 .

Dyskusja wyników

Procesy oczyszczania wody stosowane w ZPW „Mokry Dwór" skutkują istotnym zmniejszeniem wartości wskaźników SUVA oraz SCOA (rys. 2). W badaniach przeprowadzonych na przestrzeni dwóch wiosennych miesięcy, gdy jakość ujmowanego surowca podlegała istotnym zmianom (tab. 1), tendencję tę zaobserwowano we wszystkich badanych próbkach wody. Wartosć SUVA zmalała średnio od $3,32 \mathrm{~m}^{2} / \mathrm{gC}$ w wodzie surowej do $2,07 \mathrm{~m}^{2} / \mathrm{gC}$ w wodzie oczyszczonej (przed dezynfekcją). Podobnie wartości SCOA zmalały od $4,52 \mathrm{gPt} / \mathrm{gC}$ do $1,74 \mathrm{gPt} / \mathrm{gC}$. Największy udzial w obniżeniu wartości obu wskaźników mialy procesy koagulacji i ozonowania. Proces biosorpcji, którego skutecznosé w usuwaniu RWO była niska, nie wpływał na wartość analizowanych wskaźników.

Rys. 2. Zmienność wartości wskaźników SUVA i SCOA w ciagu technologicznym oczyszczania wody w ZPW "Mokry Dwór"

Analizę zmian wartości SUVA i SCOA w teście kinetycznym procesu MIEX ${ }^{\circledR}$ DOC wykonano zgodnie z przedstawioną metodyka, a mianowicie:

- aproksymując dane doswiadczalne pomiarów absorbancji w UV (rys. 3a), intensywności barwy (rys. 3b) oraz zawartości RWO (rys. 3c) przy pomocy zależności (1) (tab. 2),
- obliczając wartosé SUVA w teście kinetycznym (rys. 4a), dzieląc aproksymowane wartości absorbancji w UV (rys. 3a) przez aproksymowane zawartosci RWO (rys. 3c),
-obliczając wartość SCOA w teście kinetycznym (rys. 4b), dzieląc aproksymowane wartości intensywności barwy (rys. 3b) przez aproksymowane zawartości RWO (rys. 3c).

Tabela 1. Charakterystyka zanieczyszczeń organicznych wody powierzchniowej

Próbka wody	Data poboru	OWO $\mathrm{gC} / \mathrm{m}^{3}$	RWO* $\mathrm{gC} / \mathrm{m}^{3}$	Barwa* $\mathrm{gPt} / \mathrm{m}^{3}$	Absorbancja* w UV ${ }^{1} 54 \mathrm{~nm}$	$\begin{aligned} & \text { SUVA* } \\ & \mathrm{m}^{2} / \mathrm{gC} \end{aligned}$	$\begin{aligned} & \mathrm{SCOA} \\ & \mathrm{gPt} / \mathrm{gC} \end{aligned}$
W1	27-02-06	4,35	3,97	13,0	11,37	2,86	3,27
W2	06-03-06	3,01	2,75	12,0	10,37	3,77	4,36
W3	20-03-06	3,22	2,69	9,3	8,10	3,01	3,45
W4	27-03-06	3,99	3,99	15,5	12,97	3,25	3,88
W5	03-04-06	5,23	5,23	32,8	15,00	2,87	6,27
W6	24-0406	4,73	4,33	20,0	15,97	3,69	4,62

*próbki przesączone $(0,45 \mu \mathrm{~m})$

Rys. 3. Przykład aproksymacji danych doświadczalnych z testu kinetycznego dla próbki wody W4, w odniesieniu do absorbancji w UV 154 mm (a), intensywności barwy (b) oraz zawartości RWO (c)

Zmiany wartości wskaźników SUVA i SCOA w teście kinetycznym procesu MIEX ${ }^{\circledR}$ DOC wykazywały wyraźną tendencję malejąca, choć nie zawsze dotyczyła ona całego zakresu czasów kontaktu. Spośród sześciu badanych próbek wody surowej w trzech wypadkach wartości SUVA i SCOA malały w całym zakresie czasów kontaktu i również w trzech wypadkach wykazały tendencję do stabilizacji lub chwilowego wzrostu w zakresie krótkich czasów kontaktu (rys. 4). Należy

Rys. 4. Zmiany wartości absorbancii wtaściwej (a) oraz barwy właściwej (b) w teście kinetycznym (dane z rys. 3 - próbka W4)
podkreślić, że analiza przebiegu zmian SUVA i SCOA w teście kinetycznym, w każdym wypadku wskazywała na zmniejszenie ich wartości po kontakcie z żywicą MIEX ${ }^{(1)}$. Niemniej szybkość usuwania substancji wykazujących absorbancję w UV 254 lub barwę oraz RWO była zróżnicowana, nawet w odniesieniu do tego samego źródła wody. To wpływało na zróżnicowanie przebiegu krzywych zmian wartości SUVA i SCOA. Inne niż malejące - tendencje tych zmian dotyczyły tylko wstępnej fazy testu kinetycznego, odpowiadajacego czasom kontaktu krótszym od 10 min . Wynika stąd, że przy doborze dawki żywicy i czasu kontaktu w procesie MIEX ${ }^{\circledR}$ DOC warto wziąć pod uwagę również zmiany wartości wskaźników SUVA i SCOA, a nie tylko przebieg zmian zawartości RWO, które cechuje wyłącznie tendencja malejąca. Zwłaszcza z punktu widzenia możliwości tworzenia ubocznych produktów utlenienia lub dezynfekcji ważne jest nie tylko samo usuniecie zanieczyszczeń organicznych wody, ale również zmniejszenie udziału tych frakcji RWO, które cechuje wysoka wartość SUVA, a pozostawienie substancji o niskiej wartości absorbancji właściwej.

Proces MIEX ${ }^{\circledR}$ DOC bez wątpienia pozwala na selektywne usuwanie substancji organicznych wykazujących podwyższoną absorbancję w UV 254 oraz barwę. W wypadku każdej z badanych próbek wody spełnione były zależności (rys. 5):

Tabela 2 Parametry statystyczne aproksymacji danych doświadczalnych funkcją (1)

Próbka wody	Rozpuszczony wẹgiel organiczny		Absorbancja w UV ${ }_{2} 54 \mathrm{~nm}$		Barwa	
	R	R^{2}	R	R^{2}	R	R^{2}
W1	0,95218	0,90665	0,98880	0,97773	0,98296	0,96621
W2	0,99063	0,98135	0,99411	0,98826	0,99184	0,98375
W3	0,97260	0,94594	0,99962	0,99923	0,99184	0,98375
W4	0,98425	0,96874	0,99391	0,98786	0,99694	0,99389
W5	0,96319	0,92773	0,97507	0,95077	0,98828	0,97669
W6	0,98524	0,97069	0,99438	0,98879	0,99056	0,98120

R-współczynnik korelacji, R^{2} - współczynnik determinacji

$$
\begin{equation*}
\mathrm{SUVA}_{\infty}<\mathrm{SUVA}_{0}<\mathrm{SUVA}_{u} \tag{21}
\end{equation*}
$$

oraz

$$
\begin{equation*}
\mathrm{SCOA}_{\infty}<\mathrm{SCOA}_{0}<\mathrm{SCOA}_{\mathrm{u}} \tag{22}
\end{equation*}
$$

co oznacza, że substancje usuwane cechuje wyższy - a pozostające w wodzie niższy - udział frakcji RWO wykazujących absorbancję w UV 254 oraz nadających wodzie barwę. Dzięki temu w efekcie usuwania substancji organicznych obserwuje się nieproporcjonalnie większy stopień zmniejszenia intensywności barwy wody oraz absorbancji w UV 254 . Co za tym idzie, łatwiejsze staje się spełnienie wymagań dotyczących dopuszczalnej intensywności barwy wody oczyszczonej ($15 \mathrm{gPt} / \mathrm{m}^{3}$) [8]. We wszystkich analizowanych próbkach wody, poddanych działaniu żywicy anionowymiennej, uzyskano wartosci intensywności barwy istotnie niższe od dopuszczalnych (tab. 3). Zawartość RWO już w wodzie surowej była mniejsza od wartości uznanej za dopuszczalną ($5 \mathrm{gC} / \mathrm{m}^{3}$) [8]. Jednak podanie utleniacza (np. w procesie dezynfekcji) do wody o tak wysokiej zawartości RWO jest z reguły niemożliwe z uwagi na inne zapisy rozporządzenia [8] związane z ograniczaniem zawartości poszczególnych związków organicznych oraz ubocznych pro-

Rys. 5. Absorbancja wtaściwa (góra) i barwa wlaściwa (dół) frakcji RWO zawartych w wodzie surowej, pozostajaccych w wodzie oczyszczonej oraz usuwanych w procesie MIEX ${ }^{\star}$ DOC
duktów dezynfekcji. O ryzyku tworzenia tych ostatnich świadczy między innymi wartość absorbancji właściwej. Agencja Ochrony Środowiska Stanów Zjednoczonych (U.S. EPA) zaleca, aby w wodzie oczyszczonej, przed dawkowaniem utleniaczy, nie była ona wyższa niż $2 \mathrm{~m}^{2} / \mathrm{gC}$ [18]. W badanych próbkach wody wartość SUVA wahała się w przedziale $2,8 \div 3,76 \mathrm{~m}^{2} / \mathrm{gC}$, w wypadku wody surowej, oraz $1,55 \div 2,94 \mathrm{~m}^{2} / \mathrm{gC}$, w wypadku wody oczyszczonej z wykorzystaniem żywicy MIEX ${ }^{(\circledast)}$.

Składniki usuwane w procesie wymiany anionowej wykazywały wartość absorbancji właściwej o $6 \div 33 \%$ większą od wartości charakteryzujących wodę surową (SUVA $/$ SUVA $_{0}=$ $=1,06 \div 1,33$) (tab. 3). Wodę oczyszczoną cechowały z kolei wartości SUVA o $14 \div 51 \%$ mniejsze niż w wypadku wody surowej. Podobnie było w odniesieniu do barwy właściwej. Składniki usuwane cechowała wartość o $5 \div 31 \%$ większa, a pozostające w wodzie oczyszczonej mniejsza o $12 \div 61 \%$. Zatem selektywność metody w stosunku do usuwania substancji organicznych wykazujących barwę oraz absorbancję w UV 254 była podobna.

Rys. 6. Zakresy zmienności wskaźników SUVA oraz SCOA charakteryzujących substancje organiczne zawarte w wodzie surowej, pozostajace w wodzie oczyszczonej oraz usuwane w procesie MIEX ${ }^{\oplus}$ DOC

Z porównania rysunków 2 i 6 wynika, że proces wymiany anionowej umożliwił podobną skuteczność zmniejszenia wartości SUVA, jaka jest osiagana w całym ciagu technologicznym złożonym z koagulacji, filtracji pospiesznej, ozonowania i biosorpcji. W obu wypadkach SUVA średnio nieznacznie przekracza zalecana wartość $2 \mathrm{~m}^{2} / \mathrm{gC}[18]$. W odniesieniu do wartości SCOA, skuteczność wymiany anionowej wyraźnie odbiegała od uzyskanych w ciagu technologicznym. Średnia wartość SCOA w wodzie oczyszczonej wynosiła $2,9 \mathrm{gPt} / \mathrm{gC}$. Oznacza to, że po kontakcie z żywica anionowymienna, pomimo jej wyraźnej selektywności w stosunku do usuwania zwiazzów organicznych o charakterze barwnym, w wodzie pozostaje więcej substancji barwnych, niż po jej oczyszczaniu w procesach koagulacji, filtracji pospiesznej, ozonowania i biosorpcji, gdzie średnia wartość barwy właściwej wynosiła $1,7 \mathrm{gPt} / \mathrm{gC}$. Zwhaszcza procesy koagulacji oraz ozonowania istotnie obniżają wartość SCOA (rys. 2).

Tabela 3. Wyniki aproksymacii danych doświadczalnych

Wskaznik		Próbka wody					
		W1	W2	W3	W4	W5	W6
Rozpuszczony węgie! organiczny	$\mathrm{RWO}_{0}, \mathrm{gC} / \mathrm{m}^{3}$	4,02	2,76	2,83	3,95	4,91	4,16
	RWO ${ }_{\infty}, \mathrm{gC} / \mathrm{m}^{3}$	1,62	1,20	0,84	1,56	1,43	1,33
	$\mathrm{RWO}_{\mathrm{u}, \mathrm{gC}} / \mathrm{m}^{3}$	2,40	1,56	1,99	2,39	3,48	2,83
	τ, min	4,34	4,08	4,10	3,19	3,46	4,02
Absorbancja w UV254nm	UV ${ }_{\text {o }}$	11,24	10,18	8,15	12,41	16,51	15,65
	UV ${ }_{\text {o }}$	2,80	2,51	2,09	2,42	3,05	3,91
	UV ${ }_{\text {u }}$	8,44	7,67	6,06	9,99	13,46	11,74
	τ, min	4,22	4,23	5,59	4,92	6,35	3,57
Barwa	$1 \mathrm{~B}_{0}, \mathrm{gPt} / \mathrm{m}^{3}$	12,82	11,86	9,81	15,29	31,92	19,73
	$1 \mathrm{~B}_{\mathrm{om}}, \mathrm{gPt} / \mathrm{m}^{3}$	2,76	3,07	2,56	2,36	6,38	5,30
	$1 \mathrm{~B}_{\mathrm{u}}, \mathrm{gPt} / \mathrm{m}^{3}$	10,06	8,79	7,25	12,93	25,54	14,43
	τ, min	5,07	4,31	7,03	6,24	7,47	3,66
SUVA	SUVA $_{0}, \mathrm{~m}^{2} / \mathrm{gC}$	2,80	3,69	2,88	3,14	3,36	3,76
	SUVA $_{\infty}, \mathrm{m}^{2} / \mathrm{gC}$	1,73	2,09	2,49	1,55	2,13	2,94
	SUVA ${ }_{u}, \mathrm{~m}^{2} / \mathrm{gC}$	3,52	4,92	3,04	4,18	3,87	4,15
SCOA	$\mathrm{SCOA}_{0}, \mathrm{gPt} / \mathrm{gC}$	3,19	4,30	3,47	3,87	6,50	4,74
	SCOA ${ }_{\infty}$, gPtgC	1,70	2,56	3,05	1,51	4,46	3,98
	SCOAu, gPt/gC	4,19	5,64	3,64	5,41	7,34	5,10
SUVA $/$ SUVA ${ }_{0}$		1,26	1,33	1,06	1,33	1,15	1,10
$S^{\text {SCOA }}$ /SCOA ${ }_{0}$		1,31	1,31	1,05	1,40	1,13	1,08
SUVA ${ }_{\text {/SUVA }}$		0,62	0,57	0,86	0,49	0,63	0,78
$\mathrm{SCOA}_{0} / \mathrm{SCOA}_{0}$		0,53	0,59	0,88	0,39	0,67	0,84

Podsumowanie

Barwa właściwa i absorbancja właściwa pozwalają na ocenę selektywności procesów oczyszczania wody pod kątem usuwania zanieczyszczeń organicznych o charakterze barwnym (których zawartość jest ograniczona) oraz reaktywnych form RWO (ktorych zawartość ograniczona jest pośrednio, np. uboczne produkty dezynfekcji, dawka środka dezynfekujacego, itp.).

Jednym z procesów zdolnych do selektywnego usuwania substancji organicznych cechujących się wysokimi wartościami absorbancji oraz barwy właściwej jest wymiana anionowa z wykorzystaniem magnetyzowanych żywic drobnoziarnistych o nazwie MIEX ${ }^{\circledR}$. Badania wykazały, że selektywność tej metody w stosunku do usuwania substancji organicznych wykazujących barwę oraz absorbancję w UV 254 jest podobna. Składniki usuwane w procesie wymiany anionowej wykazuja wartości absorbancji oraz barwy właściwej odpowiednio o $6 \div 33 \%$ oraz $5 \div 31 \%$ większe od wartości charakteryzujących wodę surową. Wodęoczyszczoną cechują natomiast wartości SUVA oraz SCOA odpowiednic o $14 \div 51 \%$ oraz $12 \div 61 \%$ mniejsze niż w wypadku wody surowej. Stwierdzono też, że proces wymiany anionowej może potencjalnie dać podobny efekt zmniejszenia wartości SUVA, jaki jest osiągany w całym ciagu technologicznym oczyszczania wody, zlożonym z koagulacji, filtracji pospiesznej, ozonowania i biosorpcji, gdy w odniesieniu do wartości SCOA skuteczność wymiany anionowej jest mniejsza od uzyskanej w ciaggu technologicznym.

Zauważono też, że zależność wartości wskaźników jakościowych (SUVA, SCOA) od czasu kontaktu wody z żywica anionowymienną nie musi wykazywać analogii w stosunku do zmian wskaźników ilościowych (np. RWO). Zatem przy
doborze parametrów procesu MIEX ${ }^{\circledR}$ DOC warto rozważyé oba aspekty zagadnienia, choć zawsze w pierwszej kolejności należy zadbać o skuteczne zmniejszenie zawartości zanieczyszczeń organicznych, a następnie o możliwie skuteczne zmniejszenie wartości absorbancji właściwej i barwy właściwej.

Autor dziękuje kierownictwu Miejskiego Przedsiębiorstwa Wodociqgów i Kanalizacji sp. zo.o. we Wrocławiu za umoziliwienie przeprowadzenia badań na terenie ZPW „Mokry Dwór".

LITERATURA

1. G.V. KORSHIN, LI CHI-WANG, M.M. BENJAMIN: Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 1997, Vol. 31, No. 7, pp. 1787-1795.
2. R.F. CHRISTMAN, D.L. NORWOOD, Y. SEO, F. FRIMMEL: Oxidative degradationn of humic substances from freshwaters environments. Humic Substances II [Eds. M.H.B. HAYES, P. MacCARTHY, L.R. MALCOLM AND R.S. SWIFT], John Wiley and Sons, New York, 1989, pp. 34-67.
3. S.J. TRIANA, J. NOVAK, N.E. SMECK: An ultraviolet absorbance method of estimating the percent aromatic carbon content in humic acids. Journal of Environmental Quality, 1990, Vol. 19, No. 1, pp. 151-153.
4. J.M. NOVAK, G.L. MILLS, P.M. BERTSCH: Estimating the percent aromatic carbon in soil and humic substances using ultraviolet absorbance spectroscopy. Journal of Environmental Quality, 1992, Vol. 21, No. 1, pp. 144-147.
5. Y.-P. CHIN, G. AIKEN, E. OLOGHLIN: Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances, Environmental Science \& Technology, 1994, Vol. 28, No 11, pp. 1853-1858.
6. M. MOŁCZAN, M. SZLACHTA, A. KARPIŃSKA, A. BIŁYK: Zastosowanie absorbancji właściwej w nadfiolecie (SUVA) w ocenie jakości wody. Ochrona Środowiska, 2006, nr 4, ss. 11-16.
7. T. KARANFIL, M.A. SCHLAUTMAN, I. ERDOGAN: Survey of DOC and UV measurement practices with implications for SUVA determination. Journal AWWA, 2002, Vol. 94, No. 12, pp. 68-80.
8. Rozporządzenie Ministra Zdrowia z 29 marca 2007 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi. DzURP nr 61, poz. 417.
9. Standard Methods for the Examination of Water and Wastewater. 21 st Edition. APHA, AWWA, WEF, Washington 2005.
10. C.S. UYGUNER, M. BEKBOLET: Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy. Catalysis Today, 2005, Vol. 101, pp. 267-274.
11. M. SLUNJSKI, A. BIŁYK, K. CELER: Usuwanie substancji organicznych z wody na makroporowatych namagnetyzowanych
żywicach anionowych MIEX ${ }^{\text {© }}$. Ochrona Środowiska, 2004, nr 2, ss. 11-14.
12. M. MOECZAN, A. BIEYK, W. ADAMSKI: Usuwanie substancji organicznych z wody w technologii MIEX ${ }^{\circledR}$ DOC. Gaz, Woda i Technika Sanitarna, 2006, nr 2, ss. 14-18.
13. M. MOŁCZAN, A. BIEYK: Usuwanie substancji organicznych z wody w procesach wymiany jonowej, koagulacji i adsorpcji. Inżynieria i Ochrona Środowiska, 2006, tom 9, nr 2, ss. 185-195.
14. Ocena stanu jakości rzek województwa Dolnośląskiego w 2005 r. Wojewódzki Inspektorat Ochrony Środowiska we Wrocławiu, www.wroclaw.pios.gov.pl.
15. Wojewódzka baza danych AQUA, www.wroclaw.pios.gov.pl.
16. M. MOŁCZAN, A. BIEYK, M. SLUNJSKI, K. CELER: Zastosowanie testow naczyniowych do oceny skuteczności usuwania substancji organicznych z wody w procesie MIEX ${ }^{\circledR}$ DOC. Ochrona Środowiska, 2005, nr 2, ss. 3-7.
17. M. MOLCZAN: Opis i interpretacja wynikow testu kinetycznego procesu MIEX ${ }^{\text {® }}$ DOC. Ochrona Środowiska, 2007, nr 1, ss. 45-48.
18. National Primary Drinking Water Regulations: Disinfectants and Disinfection By-Products. Final Rule. Fed. Reg., 63:241:69390, U.S. EPA, 1998.

Mołczan, M. Effect of the Anion Exchange Process on the Change in the Quality of Organic Water Pollutants Characterized by the Specific UV Absorbance (SUVA) and Specific Colour Absorbance (SCOA) Values. Ochrona Środowiska 2007, Vol. 29, No. 2, pp. 13-19.

Abstract: The quality of the organic substances that are present in the water is characterized both by colour and UV absorbance. Specific UV Absorbance (SUVA) and Specific Colour Absorbance (SCOA) describe the density of the organic matter properties that are indicative of the potential reactivity (SUVA) and capability of the organic substance to colour the water (SCOA). Knowing the values of SUVA and SCOA enables the selectivity of the water treatment process to be assessed with respect to the removal of organic coloured matter (whose content is limited) and reactive substances (whose content is indirectly limited, e.g. by the by-products of disinfection, by disinfectant
dosage, etc.). When the organics to be removed are characterized by high SUVA and SCOA values, anion exchange over magnetized fine-grained MIEX ${ }^{(®)}$ resins is the treatment mode that provides a selective removal of such organic substances. The experiments have revealed the following: the organic pollutants being removed via anion exchange display SUVA and SCOA values that are by 6 to 33% and 5 to 31%, respectively, higher than thosecharacterizing raw water; the SUVA andSCOA values of treated water are by 14 to 51% and 12 to 61% lower than those of raw water. The study has substantiated the potentiality of anion exchange for providing a reduction in the SUVA value similar to the one achieved by the entire water treatment train involving coagulation, rapid filtration, ozonation and biosorption.

Keywords: Watertreatment, organics removal, ionexchange, MIEX $^{\oplus}$ resin, Specific UV Absorbance (SUVA), Specific Colour Absorbance (SCOA).

[^0]: Dr inż. M. Mołczan: Politechnika Wroctawska, Instytut Inżynierii Ochrony Środowiska, Wybrzeże S. Wyspiańskiego 27, 50-370 Wroclaw marek.molczan@pwr.wroc.pl

