Kolejne dwa rozdziały, tj. 8. i 9., poświęcono podstawom realizacji procesów termicznych wykorzystania paliw (uwężlanie w procesach pirolizy i odgazowania, zgazowanie, spalanie) oraz bilansom masy i energii procesów współspalania paliw formowanych z paliwami energetycznymi.

Ostatni, 10., rozdział dotyczy bardzo ważnego zagadnienia z punktu widzenia stosowania paliw formowanych – badania i certyfikacji paliw. Autorzy podkreślają potrzebę zmian przepisów prawnych dotyczących klasyfikacji odpadów, aby można było uznać, że paliwa formowane z odpadów nie są odpadami, lecz specjalnymi paliwami, niepodlegającymi już przepisom ustawy o odpadach. Zakres badań paliw formowanych powinien być szeroki i obejmować wcześniej wymienione parametry fizyczne i chemiczne, a ponadto także właściwości emisyjne. Wyniki tych badań, wykonanych zgodnie z odpowiednimi normami UE, powinny być zawarte w certyfikacie paliwa formowanego, będącego podstawą dopuszczenia danego paliwa do procesu spalania lub współspalania, wykonywania obliczeń emisyjnych, oceny oddziaływania na środowisko itp. Rozdział ten zawiera przykładowe wyniki badań jednego z paliw formowanych, przeznaczonego do współspalania z węglem w paleniskach energetycznych, stanowiących podstawę wydania certyfikatu.

Podręcznik „Paliwa formowane” ma oryginalny i nowatorski charakter. Zawiera zarówno wiedzę teoretyczną, dotyczącą procesów termicznego przekształcania odpadów i paliw z odpadów, jak również praktyczne przykłady zastosowań paliw, urządzeń i maszyn do przetwarzania odpadów i wytwarzania paliw formowanych, a także przykłady układów technologicznych przetwarzania odpadów na paliwa. Bardzo cenne są wyniki badań własnych Autorów, dotychczas niepublikowanych, jak i przykłady certyfikacji paliw. Przedstawione w książce zasady klasyfikacji i certyfikacji paliw formowanych są jasne i zgodne z oczekiwaniami specjalistów z zakresu gospodarki odpadami i energetyki oraz wskazują kierunki niezbędnych zmian prawna w zakresie gospodarki odpadami.

Podręcznik jest przydatny zarówno dla studentów, jak i wykładowców uczelni technicznych (wydziały kształtujące w zakresie inżynierii środowiska, energetyki, budowy i eksploatacji maszyn), a także dla specjalistów, pracowników przedsiębiorstw gospodarki odpadami, energetyki, przemysłu cementowego i innych branż pokrewnych.

MARTA SEBASTIAN, RYSZARD SZPADT

WŁAŚCIWOŚCI I ZASTOSOWANIE OZONU


Ozon jest bardzo ważną atrapą, która występuje w biosferze i ma na celu zatrzymanie przekształcenia między innymi w wielu dziedzinach inżynierii środowiska. Wielkość tego też z dużym zadowoleniem należy odnotować pojawienie się w ubiegłym roku dwóch monografii zawierających kompendium wiedzy dotyczącej ozonu, w sposób istotny wypełniających dotychczasową lukę na rynku książkarskim.

Pierwsza monografia zatytułowana „Występowanie i właściwości ozonu” składa się z pięciu rozdziałów, z których każdy został opisany przez innego naukowca lub zespołu naukowców. Monografia rozpoczyna się krótkim wstępem historycznym odkrycia ozonu i dochodzenia do obecnego stanu wiedzy.

W drugim rozdziale przedstawiono podstawowe właściwości fizyczno-chemiczne i mechanizmy tkankowego działania ozonu. Scharakteryzowano wodne i niewodne roztwory ozonu, ich trwałość, a także metody oznaczania ozonu w fazie gazowej, w tym w atmosferze, oraz ozonu rozpuszczonego w wodzie.

W rozdziale trzecim omówiono laboratoryjne i przemysłowe metody wytwarzania ozonu. Szczególnie dokładnie opisano metodę elektrolizową, podając istotność takich parametrów, jak rodzaj materiału dielektryka i elektrody, szerokość szczeliny w układzie wydawczym i temperaturę, wpływających na kinetykę syntezy ozonu.

Bardzo ciekawe i ważne informacje zawiera czwarty rozdział zatytułowany „Ozon w atmosferze”, w którym Autorzy omówili kierunki w zmienności całkowitej zawartości ozonu, mechanizmy powstawania i rozkładu ozonu w troposferze oraz metody pomiaru zawartości ozonu w troposferze. Zwrócono również uwagę na bardzo istotną kwestię długoterminowych zmian intensywności promieniowania UV, jako skutku zmian w warstwie ozonowej.

W rozdziale ostatnim, zatytułowany „Ozon w środowisku wodnym” omówiono mechanizmy rozładu ozonu oraz czynniki wpływające na reakcję ozonu w środowisku wodnym.
Druga monografia zatytułowana „Zastosowanie ozonu” składa się z dziewięciu rozdziałów.

W pierwszym, zatytułowanym „Wykorzystanie ozonu w technologii oczyszczania ścieków”, omówiono dwa mechanizmy reakcji ozonu ze związkami organicznymi – na drodze bezpośredniego utlenienia substratu przez przyłączenie cząsteczki ozonu do substancji utlenianej, w wyniku czego powstają związki nadtlenkowe, oraz działając pośrednio przez produkt jego rozkładu w środowisku wodnym, takie jak rodniaki hydroksylowe i hydroksynadtlenkowe. W dalszej części przedstawiono przebieg utleniania takich związków, jak cyjanki, detergenty, pestycydy, fenole i ich pochodne, barwniki oraz wielopierścieniowe węglowodory aromatyczne. Omówiono przykłady instalacji przemysłowych z zastosowaniem procesu ozonowania do oczyszczania ścieków z takich przemysłów, jak galwanotechniczny, włókienniczy, celulozowo-papierniczy, chemiczny, a także ścieków powstających w rafineriach ropy naftowej.

W rozdziale drugim omówiono zastosowanie ozonu do dezyfekcji ścieków miejskich. W części wstępnej scharakteryzowano wskaźniki mikrobiologiczne ścieków oraz możliwe do zastosowania metody dezynfekcji. Następnie omówiono mechanizm działania ozonu na mikroorganizmy, wrażliwość organizmów na ozon, stosowane dawki dezynfekcanta oraz kinetykę procesu. Przedstawiono również przykłady zastosowania dezynfekcji ścieków ozonem w pełnej skali technicznej.

Kolejny rozdział omawia możliwość zastosowania ozonu do oczyszczania odcieków ze składowisk odpadów stałych. Po przedstawieniu typowego składu odcieków omówiono kinetykę procesu ozonowania. Na zakończenie przedstawiono możliwości do zastosowania zintegrowanej systemy oczyszczania ścieków.

W rozdziale czwartym omówiono wykorzystanie ozonu w procesach zaawansowanego utleniania. Przedstawiono mechanizm i kinetykę reakcji z udziałem rodników hydroksylowych, które są wytwarzane we wszystkich metodach zaawansowanego utleniania (AOP). Następnie omówiono mechanizmy i rezultaty badań łącznego działania ozonu i nadtlenku wodoru, ozonu i promieniowania UV, ozonu, promieniowania UV i nadtlenku wodoru, ozonu i promieniowania γ, ozonu i ultradźwięków, ozonu i odczynnika Fentona. Przeprowadzono również analizę porównawczą różnych metod AOP oraz przedstawiono przykłady zastosowań przemysłowych.

W rozdziale tym omówiono również zastosowanie katalizatorów w procesie ozonowania.

Kolejny rozdział dotyczy integracji procesów ozonowania i biologicznego oczyszczania ścieków. Omówiono możliwe usytuowanie ozonowania w chemiczno-biologicznym oczyszczaniu ścieków przemysłowych, co związane jest z pośrednimi produktami ozonowania – ich toksycznością i podatnością na biodegradację. Przedstawiono kryteria podatności na biodegradację oraz krótko omówiono kinetykę procesu. Zaszyfrowano możliwości zastosowania ozonowania, nie tylko jako metody utleniania zanieczyszczeń zawartych w ściekach, wspomagającej ich biodegradację, ale również jako środek zapobiegającego pęcznieniu osadu czynnego powodowanego przez baktery nitkowate i grzyby ściekowe, a także jako środek dezintegrującego osady ściekowe.

Kolejny rozdział przedstawia ogólne zasady ozonowania podczas oczyszczania wody przeznaczonej do spożycia, do wspomagania procesów technologicznych i dezynfekcji. Rozdział ten zawiera także informacje o zastosowaniu ozonu do uzdatniania wody w basenach pływalniczych, obiegach chłodniczych oraz w uzdatnianiu wód technologicznych definiowanych jako wody zustryjne o niewielkim stopniu zanieczyszczenia. Omówiono również kryteria projektowania reaktorów do ozonowania.

Trzy ostatnie rozdziały, których współautorami są naukowcy z zagranicy, dotyczą innych, poza inżynieria środowiska, specyficznych zastosowań ozonu.

W rozdziale siódmym omówiono zastosowanie ozonu w przemysle rolno- spożywczym, do konserwowania i przechowywania żywności oraz do dezynfekcji instalacji i pomieszczeń.

Rozdział ósmy dotyczy medycznego zastosowania ozonu. Oprócz klinicznego zastosowania dezynfekcyjnych właściwości ozonu w leczeniu ran ciekawa jest noworozwijająca się dziedzina zastosowania farmakologicznego. Omówiono sposoby stosowania ozonu w tzw. oзонотерapii oraz wskazania i przeciwwskazania tej metody.

Krótki rozdział ostatni prezentuje perspektywy nowych zastosowań i rozwoju technologii zastosowania ozonu. Mówią się o nowych obszarach zastosowań w przemyśle elektronicznym do produkcji półprzewodników, do wytwarzania powłok antykorozjowych, do regeneracji katalizatorów, w przemysłach prawidłowym z zamkniętym obiegiem wody oraz do niskotemperaturowego usuwania tlenków azotu z gazów spalinowych.

Każdy z rozdziałów obu monografii zawiera bogatą bibliografię, w której znajdują się również liczne pozycje Autorów.

Bez wątpienia obie monografie są bardzo ważną pozycją na rynku wydawniczym. Stanowią kompendium wiedzy z dziedziny występowania, właściwości i zastosowań ozonu w różnych dziedzinach, ze szczególnym ukierunkowaniem na inżynierię środowiska.

Obie książki można z pełnym przekonaniem polecić naukowcom zajmującym się technologią wody i ścieków oraz użytkownikom instalacji ozonu.

WOJciech Adamski