Jolanta Maćkiewicz, Andrzej M. Dziubek

Usuwanie azotanów z wód podziemnych na selektywnych żywicach anionowymiennych IONAC

Konieczność usuwania azotanów z wód podziemnych pojawia się w ostatnich latach coraz częściej. Zanieczyszczenie wód azotanami dotyczy przede wszystkim rejonów o rozwiniętej produkcji rolnej i hodowlanej. Głównym źródłem azotanów są łatwo rozpuszczalne azotowe nawozy mineralne oraz pestycydy stosowane w uprawach rolnych. Do wód podziemnych przenikają azotany również w wyniku infiltracji opadów atmosferycznych, splywów powierzchniowych z przenawożonych pól uprawnych (nie tylko nawozami sztucznymi, ale także obornikiem), z odcieków z wysypisk odpadów oraz ze ścieków miejskich i przemysłowych.

Azotany w wodach podziemnych obecne są także jako skutek przemian związków azotowych (azotu organicznego i amonowego) zachodzących w gruncie, zależnie od panujących warunków hydrogeochemicznych oraz aktywności biologicznej mikroorganizmów.

Ograniczenie zawartości azotanów w wodzie przeznaczonej do spożycia datuje się od momentu wykazania, że powodują one utlenianie hemoglobiny krwi do methemoglobiny, której podwyższona zawartość powoduje zakłócenia pracy mięśnia sercowego. Nadmierna ilość azotanów w wodzie do picia powoduje również powstawanie nitrozoamin w przewodzie pokarmowym, które przyczyniają się do rozwoju procesów nowotworowych.

Dopuszczalna zawartosć azotanów w wodzie przeznaczonej do spożycia, określona w rozporządzeniu Ministra Zdrowia z 19 listopada 2002 r ., wynosi $50 \mathrm{gNO}_{3}^{-} / \mathrm{m}^{3}$ (ok. $11,3 \mathrm{gN} / \mathrm{m}^{3}$). Jest to wartość zgodna z przepisami obowiązujacymi w innych krajach, w tym w Unii Europejskiej, a także zalecana przez Światową Organizację Zdrowia (WHO).

Metody usuwania azotanów z wody

Usuwanie z wody azotanów jest niezmiernie trudne. Możliwe do zastosowania są dwie metody, tj. denitryfikacja i wymiana jonowa.

Metoda denitryfikacji polega na biologicznej redukcji azotanów do azotu cząsteczkowego. Donorami elektronów, zależnie od rodzaju denitryfikacji, są substancje organiczne (dla denitryfikacji heterotroficznej) i zredukowane związki siarki lub wodór gazowy (dla denitryfikacji autotroficznej) [1]. We wszystkich przypadkach naturalnym konkurentem azotanów, jako akceptora elektronów, jest tlen. Stąd też woda poddana

[^0]denitryfikacji wymaga odtlenienia, wprowadzenia związków węgla, chociażby w postaci kwasu octowego, oraz dodatkowo substancji odżywczych, przede wszystkim źródeł fosforu. W praktyce oczyszczania wody znalazła zastosowanie denitryfikacja heterotroficzna, po której, celem usunięcia wytworzonych zanieczyszczeń, należy prowadzić procesy napowietrzania i filtracji, a często także sorpcji. Procesy biologiczne usuwania azotanów z wody w aspekcie technicznym nie są do końca rozpoznane. Na skalę techniczną stosowane są we Francji. W Polsce nie wychodzą poza skalę badań. Poza tym procesy biologiczne w układzie technologicznym oczyszczania wody są trudne do zautomatyzowania. W zasadzie denitryfikacja dla zakładu o małej wydajności jest nieopłacalna.

Łatwiejsza do wdrożenia w układach oczyszczania wody jest metoda wymiany jonowej na selektywnych żywicach anionowymiennych, przy czym taka żywica musi mieć atest sanitarny. Obecnie są dostępne tego rodzaju żywice, głównie importowane z Niemiec [2,3].

Pozostale metody usuwania azotanów wiążą się z demineralizacja wody. W tym wypadku badania również zmierzaja do selektywnego usuwania azotanów, przy znacznym ograniczeniu demineralizacji wody, czego przykładem może być monoselektywna elektrodializa [4]. Do przyszłościowych metod usuwania azotanów z wody należą technologie bazujące na redukcji katalitycznej, z wykorzystaniem katalizatorow bimetalicznych i monometalicznych, oraz technologie elektrokatalityczne. Obiecująca jest również technologia denitryfikacji heterotroficznej w połączeniu z wymiana jonową [3].

W pracy przedstawiono wyniki badań nad skutecznością usuwania azotanów z wody w procesie selektywnej wymiany jonowej na żywicy IONAC SR-7 firmy Bayer.

Przedmiot i metodyka badań

Silnie zasadowy jonit IONAC SR-7 charakteryzuje się 3-krotnie większą selektywnością w stosunku do azotanów niż inne dostępne na rynku anionity, dzięki czemu umożliwia usuwanie azotanów z wód zawierajacych siarczany, bez niebezpieczeństwa tzw. przebicia azotanów, które występuje wg producenta masy jonowymiennej w przypadku innych jonitów wówczas, gdy pojemność żywicy na azotany jest wyczerpana, a jony siarczanowe wypieraja jony azotanowe z miejsc aktywnych. Gdy to zjawisko ma miejsce, filtrat będzie zawierał więcej azotanów niż roztwór surowy przed wyminą jonową. Badana żywica ma jon wymienny chlorkowy w grupie funkcyjnej (amina czwartorzędowa). Jej uziarnienie wynosi
$0,3 \div 1,20 \mathrm{~mm}$, współczynnik pęcznienia $-1,15$, temperatura pracy - do $80^{\circ} \mathrm{C}$, zalecana wysokość złoża - od $0,8 \mathrm{~m}$, a prędkość filtracji - do $30 \mathrm{~m} / \mathrm{h}$. Proces usuwania azotanów z wody na drodze wymiany jonowej na tym anionicie prowadzony jest w sposób selektywny. Obecność siarczanów i chlorków w wodzie nie przeszkadza w prowadzeniu procesu.

Badania przeprowadzono na wodzie wodociagowej wzbogaconej w azotany na modelowej kolumnie o średnicy 28 mm , wysokości złoża $0,40 \mathrm{~m}$, przy prędkości filtracji $10 \div 25 \mathrm{~m} / \mathrm{h}$, w czterech cyklach badawczych. W I i II cyklu zawartość azotanów w badanej wodzie wynosiła $15 \mathrm{gN} / \mathrm{m}^{3}$, natomiast w III i IV $-30 \mathrm{gN} / \mathrm{m}^{3}$, przy czym prędkosć filtracji w I i III cyklu wynosiła $10 \mathrm{~m} / \mathrm{h}$, a w II i IV $-25 \mathrm{~m} / \mathrm{h}$. Przygotowanie jonitu do pracy obejmowało następujące operacje:

- wstępne przepłukanie złoża, w celu jego spulchnienia i usunięcia zanieczyszczeń z porów, przeprowadzono przy użyciu wody wodociagowej w kierunku od dolu ku górze z prędkością $6 \mathrm{~m} / \mathrm{h}$,
- regenerację złoża, która przeprowadzono przy użyciu 10% roztworu chlorku sodu, przy prędkości przepływu $5 \mathrm{~m} / \mathrm{h}$ w cyklach I i II oraz $2 \mathrm{~m} / \mathrm{h}$ w pozostałych cyklach,
- przemycie złoża, do którego stosowano wodę destylowaną w I i II cyklu oraz wodę wodociagowa w III i IV cyklu, z zachowaniem prędkości przepływu $5 \mathrm{~m} / \mathrm{h}$.

Proces wymiany jonowej kontrolowano na podstawie oznaczeń zasadowości, pH, przewodności właściwej, zawartości chlorków, siarczanów i azotanów w filtracie (zgodnie z PN).

Wyniki badań

Woda surowa charakteryzowała się, oprócz podwyższonej zawartości azotanów, obecnością chlorków średnio około $50 \mathrm{gCl}^{-} / \mathrm{m}^{3}$ i siarczanów około $90 \mathrm{gSO}_{4}{ }^{2-} / \mathrm{m}^{3}$ (tab. 1). Wyniki uzyskane podczas wymiany jonowej odniesiono do tzw. krotności wymiany (stosunek objętości przefiltrowanej wody do objętości masy jonowymiennej) i przedstawiono na rysunkach 1-4.

Tabela 1. Charakterystyka wody surowej

Wskaźnik, jednostka	CykI!ill	Cykl III i IV
$\mathrm{pH},-$	$7,8 \div 8,2$	$7,9 \div 8,1$
Zasadowość ogólna, val/m		
Przewodność właściwa, $\mu \mathrm{S} / \mathrm{cm}$	$2,7 \div 2,8$	$2,7 \div 2,8$
Azotany, $\mathrm{gN} / \mathrm{m}^{3}$	$590 \div 625$	$614 \div 637$
Chlorki, $\mathrm{gCl}^{-} / \mathrm{m}^{3}$	15	30
Siarczany, $\mathrm{gSO}_{4}{ }^{2-} / \mathrm{m}^{3}$	$46 \div 52$	$49 \div 55$

W cyklach I i II zasadowość ogólna wody kształtowała się w przedziale $0,3 \div 3,1 \mathrm{val} / \mathrm{m}^{3}$. Tak widoczne różnice były spowodowane przygotowaniem jonitu do pracy (płukanie woda destylowana), natomiast w cyklach III i IV zasadowość ustaliła się w krótkim czasie na poziomie zasadowości wody wodociagowej (rys. 1) (plukanie woda wodociagowa). W wypadku zastosowania do przemywania jonitu wody destylowanej (cykl I i II), zawartość chlorków, zwłaszcza w początkowej fazie wymiany, była wysoka, natomiast w trakcie trwania cyklu zawartość chlorków w wodzie przefiltrowanej uległa stopniowemu obniżeniu aż do ustalenia się na poziomie chlorków w wodzie wodociągowej (rys. 2). Wyrównanie zawartości chlorków w cyklach III i IV (płukanie woda wodociaggową) było podobne jak w cyklach I i II, ale zachodziło w krótszym czasie.

Rys. 1. Zmiana zasadowości ogólnej wody podczas wymiany jonowej

Rys. 2. Zmiana zawartości chlorków w wodzie podczas wymiany jonowej
Woda poddana procesowi wymiany jonowej na anionicie w cyklach I i II zawierała azotany w ilości $15 \mathrm{gN} / \mathrm{m}^{3}$, natomiast w cyklach III i IV $-30 \mathrm{gN} / \mathrm{m}^{3}$. Porównując wyniki badań uzyskanych we wszystkich cyklach stwierdzono, iż istotny wpływ na skuteczność procesu wymiany jonowej miała prędkość filtracji. We wszystkich cyklach przebicie siarczanów przez jonit nastạpiło wcześniej niż azotanów i ich zawartość wzrosła powyżej wartości początkowej. Usuwanie siarczanów z wody po przebiciu zachodziło nawet po wyczerpaniu zdolności jonowymiennej jonitu w stosunku do azotanów (rys. 3).

Rys. 3. Zmiana zawartości siarczanów w wodzie podczas wymiany jonowej

Z obserwacji wynikało, że wymiana jonowa przy prędkości $25 \mathrm{~m} / \mathrm{h}$ powodowała trudności eksploatacyjne. W trakcie filtracji złoże uległo zapowietrzeniu, w związku z czym konieczne było przerywanie cyklu i przepłukanie złoża wodą wodociagowa w celu jego odpowietrzenia. Po przepłukaniu złoża dalej prowadzono wymianę jonową. Skuteczność usuwania azotanów w czterech przeprowadzonych cyklach była zbliżona, w każdym wypadku uzyskano co najmniej 99% zmniejszenia zawartości azotanów (rys. 4).

Rys. 4. Zmiana zawartości azotanów w wodzie podczas wymiany jonowej
W cyklach III i IV punkt przebicia azotanów wystąpił przy krotności wymiany powyżej 200, przy której skuteczność usuwania azotanów wynosiła około 70%, natomiast w cyklach I i II przy krotności wymiany zbliżonej do 400 (40% usunięcia azotanów). Należy jednak podkreślić, że najniższą zawartość azotanów w wodzie oczyszczonej uzyskano przy prędkości filtracji $10 \mathrm{~m} / \mathrm{h}$ i początkowej zawartości azotanów $30 \mathrm{gN} / \mathrm{m}^{3}$, natomiast najdłuższy cykl pracy kolumny uzyskano przy prędkości filtracji $10 \mathrm{~m} / \mathrm{h}$ i zawartości azotanów $15 \mathrm{gN} / \mathrm{m}^{3}$.

Na podstawie otrzymanych wyników określono całkowitą ilość azotanów zatrzymaną na anionicie, a następnie ilość zatrzymanych azotanów odniesiono do objętości masy jonitu. Obliczona w ten sposób całkowita zdolność wymienna jonitu wynosiła $0,36 \div 0,50 \mathrm{val} / \mathrm{dm}^{3}$ i byla niższa od podawanej przez producenta $\left(0,65 \mathrm{val} / \mathrm{dm}^{3}\right)$. Ponadto zależała ona od początkowej zawartości azotanów w wodzie poddanej wymianie jonowej. Podobną zależność wykazano w badaniach nad usuwaniem azotanów na selektywnym anionicie Imac HP-555 [2].

Podsumowanie

Przeprowadzone badania wykazały, że żywica anionowymienna IONAC SR-7 była selektywna w stosunku do azotanów i może byé stosowana w procesie oczyszczania wody. Zaobserwowane różnice w jakości wody na początku cyklu wymiany jonowej wynikały ze sposobu przygotowania jonitu do pracy, zwłaszcza od rodzaju wody użytej do przemywania i spulchniania jonitu, co w praktyce technicznej nie ma większego znaczenia.

Określona zdolność wymienna jonitu była niższa od określonej przez producenta, co może wynikać z faktu, iż w badaniach określono tę zdolność tylko w stosunku do azotanów. Mimo tych różnic, selektywność jonitu była wysoka, a wyczerpanie zdolności do usuwania azotanów zachodziło przy krotności wymiany objętości żywicy w zakresie $200 \div 400$ i było sygnalizowane dużo wcześniej pojawieniem się jonów siarczanowych w odpływie, nawet powyżej ich początkowej zawartości. Zależność tę zauważyli także inni autorzy [5]. W trakcie trwania cyklu wymiany jonowej, po wyczerpaniu zdolności jonowymiennych żywicy w stosunku do azotanów, wystạpiło zjawisko usuwania siarczanów z wody, bez przebicia azotanów do filtratu.

Stosowanie procesu wymiany jonowej w układzie oczyszczania wody wymaga zastosowania zbiorników retencyjnych do wyrównania składu fizyczno-chemicznego wody oczyszczonej.

Autorzy dziękujq firmie LANXESS za udostępnienie próbek jonitu do badań.

LITERATURA

1. J. NAWROCKI, S. BILOZOR: Uzdatnianie wody. Procesy chemiczne i biologiczne. Wydawnictwo Naukowe PWN, Warszawa--Poznań 2000.
2. A. SIEROŃ, M. ŚWIDERSKA-BRÓŻ: Usuwanie azotanów z wody w procesic wymiany jonowej. Ochrona Środowiska, 1998, nr 4, ss. 7-9.
3. M. APOLINARSKI: Nowe kierunki w technologii usuwania azotanów z wód podziemnych. Ochrona Środowiska, 2005, nr 3. ss. 21-26.
4. J. WIŚNIEWSKI, A. RÓżAŃSKA: Usuwanie azotanów z roztworów wodnych metoda elektrodializy. Ochrona Środowiska, 2002, nr 4, ss. 11-15.
5. W. SAWINIAK: Badania skuteczności selektywnej wymiany jonowej przy usuwaniu azotanów z wód podziemnych. Ekoinżynieria, 1998, nr 2.

Maćkiewicz, J., Dziubek, A.M. Nitrates Removal from Groundwater via Selective Anion-Exchange Resins of IONAC Type. Ochrona Środowiska 2005, Vol. 27, No. 4, pp. 45-47.

Abstract: The IONAC SR-7 resin was used to substantiate the applicability of ion exchange on selective anion-exchange resins to the removal of nitrates from groundwater which was to serve for drinking purposes. The concentration of nitrates in the groundwatertreated by the ion-exchange process varied from 15 to $30 \mathrm{gN} / \mathrm{m}^{3}$, in the presence of chloride ions ($50 \mathrm{gCl}^{-} / \mathrm{m}^{3}$)
and sulfate ions ($90 \mathrm{gSO}_{4}{ }^{2-} / \mathrm{m}^{3}$). The velocity of water flow through the ion-exchange column ranged between 10 and $25 \mathrm{~m} / \mathrm{h}$. The exchange capacity of the resin with respect to nitrates determined in the experimental study was $0.5 \mathrm{val} / \mathrm{dm}^{3}$. The efficiency of the ion-exchange process up to the exhaustion of the ion-exchange capacity of the resin (expressed as the ratio of the treated water volume to the resin volume) was found to vary from 200 to 400.

Keywords: Groundwater, water treatment, nitrates removal, ion exchange.

[^0]: Dr inż. J. Maćkiewicz, dr inż. A. M. Dziubek: Politechnika Wrocławska, Instytut Inżynierii Ochrony Środowiska, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław
 jolanta.mackiewicz@pwr.wroc.pl, andrzej.dziubek@pwr.wroc.pl

