Mariusz Dudziak, Krystyna Luks-Betlej

Opoczenie obecności estrogenów – steroidowych hormonów płciowych – w wybranych wodach rzecznych w Polsce

Obecność wielu zanieczyszczeń w środowisku wodnym, mogących niekorzystnie wpływać na zdrowie człowieka, budzi uzasadniony niepokój. Spośród specyficznych organicznych zanieczyszczeń wód pochodzenia antropogenicznego na uwagę zasługują estrogeny – steroidowe hormony płciowe. Obecność tych związków w wodach jeszcze do niedawna była ignorowana, ponieważ należały one do naturalnych substancji powstających w organizmach. Obecność estrogenów naturalnych i syntetycznych w środowisku związana jest z rozbudzeniem się stosowaniem leków hormonalnych w leczeniu weterynaryjnym zwierząt hodowlanych i domowych, jak i w hormonalnej terapii zastępczej oraz antykoncepcji. Estrogeny, zarówno naturalne jak i syntetyczne, są wydzielane z organizmu wraz z moczem. Do środowiska wodnego przenikają na skutek odprowadzania ścieków surowych i oczyszczonych. W środowisku wodnym estrogeny pojawiają się na bardzo niskim poziomie stężenia, ale na tyle dostatecznym, aby negatywnie wpływać na prawidłowe funkcjonowanie układu wydzielania wewnętrznego organizmów narażonych na ich obecność, powodując poważne zakłóżenia procesów rozrodczych i rozwoju organizmów. Badania środowiskowe przypisują im różnorakie działania, m.in. demaskulizujące i zmniejszające płódność u zwierząt oraz wpływające na rozwój raka jąder [1–7].

Dotychczasowe badania nie pozwoliły jeszcze na określenie progowego stężenia estrogenów, poniżej którego nie obserwuje się ich szkodliwego oddziaływania, bowiem już małe dawki tych substancji zasilające środowisko mogą zmienić naturalną równowagę. Unia Europejska w dokumencie opublikowanym w 1999 r. (przyjęta w 2000 r.) uznala zasadność i potrzebę rozwoju odpowiednich narzędzi do monitorowania w środowisku naturalnym zanieczyszczeń o tego rodzaju aktywności biologicznej, a ponadto proponuje włączenie tych związków na listę priorytetowych substancji wymagających monitorowania. Jako najważniejsze z tej grupy uznano takie naturalne hormony, jak progesterona, testosterona, fitoestrogeny oraz syntetycznie produkowane hormony jako dostateczne środki antykoncepcyjne i związki przeznaczone do stosowania przemysłowego [8].

Oznaczanie niskich stężeń tych związków w środowisku wodnym na poziomie ptt (ng/dm³) jest wyzwaniem dla analityków i wciąż opracowuje się nowe procedury analizacyjne.

Dodatkowym utrudnieniem analizy tego typu próbek jest różnorodność i złożoność matrycy, jaką stanowią wody naturalne. W związku z tym stosuje się różne techniki wydzielania i wzbogacania tych związków. Poniżej przedstawiono 2 z nich: wody do nowej technikie chromatograficznej (gc-ms).

Spośród technik stosowanych do wydzielania estrogenów z matrycy wodnej najczęściej wykorzystywane są [9–19]:

- klasyczna ekstrakcja ciecz-ciecz (Liquid-Liquid Extraction – LLE),
- ultradźwiękowa ekstrakcja do fazy stałej (Solid Phase Extraction – SPE),
- metody chromatograficzne.

Do oznaczeń identyfikacyjnych oraz ilościowych indywidualnych związków stosowane są przede wszystkim:

- techniki chromatograficzne, tj. kapilarną chromatografię gazową (GC) z detektorem plombowym, jonizacyjnym (FID) lub detektorem mas (MS) [9–12],
- wysokosprawną chromatografię cieczową (HPLC) z różnimi systemami detekcji (spektrofotometria, fluorescencja, spektrometria mas) [14–18],
- chromatografię cienkowarstwową,
- metody immunochimiczne [19].

Przedmiot i metodyka badań

Przedmiotem badań były próbki wód powierzchniowych pobrane w czerwcu 2003 r. (Odra w Kędzierzynie-Koźlu, Wisła w Krakowie, Kanał Gliwicki w Gliwicach), w których oznaczono następujące estrogeny pochodzenia naturalnego: estron (E1) i estradiol (E2) oraz syntetyczny – etynilestradiol (EE2). Do oznaczeń stosowano ekstrakcję do fazy stałej (SPE), jako metodę wydzielania estrogenów z wody, natomiast w analizie identyfikacyjnej – kapilarną chromatografię gazową sprzężoną ze spektrometrią mas (GC-MS). Po ekstrakcji estrogeny ułożono do pochodnych siliowych i oznaczono ilościowo chromatograficznie. Strukturę badanych związków przedstawia rysunek 1, a ich właściwości fizycznochemiczne podano w tabeli 1.

Próbki wody (1 dm³) zakwaszono i wstępnie oczyszczono na filtrach z włókna szklanego (śr. porów 0,45 μm, Millipore).
Estrogeny wydzielono z wody w kolumienkach z wypełnieniem oktaedrylosilanowych (C18, J. T. Baker). Ekstrakcja (SPE) była złożona z następujących etapów:
- przygotowanie wypełnienia (kondycjonowanie metanolem i acetonitemy),
- podanie na kolumnę 1 dm³ badanej wody z dodatkiem wzorca wewnętrznego (octan cholesterolu, Sigma-Aldrich),
- eluacja ekstraktu estrogenów acetonitemy.

Wydzielone estrogeny poddano reakcji sililacji za pomocą mieszaniny trójskładnikowej, zawierającej N-methyl-N-(trimetylsilyl) trifluoroacetamid (MSTFA), jodotrimetylosilan (TMIS) i dithioerytol (DTE) w proporcjach 1000:4:2 (v/v/w, Sigma-Aldrich), otrzymując pochodne trimetylosilowe, które następnie poddano analizie na chromatografii gazowej z uzyskaniem pomiarów podobnych do tych opisanych w tablicy 2. Wszystkie próby wykonane na metodę chromatografii gazowej (mirez, Sigma-Aldrich), w której wykorzystano metodę SIM (Single Ion Monitoring – SIM) podaną w tabeli 2, zawierającej także pozostałe warunki analizy.

Dyskusja wyników badań

We wszystkich badanych próbkach wód rzecznych stwierdzono obecność oznaczanych estrogenów, tj. estronu, estradiolu oraz etinylestradiolu. Wyniki analizy ilościowej przedstawiono w tabeli 3. W wodach Odry i Kanału Gliwickiego stwierdzono obecność estronu, którego stężenie wynosiło ponad 1 ng/dm³, natomiast w wodach Wisły oznaczono 1,3 ng/dm³ estradiolu, przy czym pozostałe estrogeny występowały w ilości poniżej 1 ng/dm³, tj. na granicy oznaczenia metody. Granice oznaczenia zastosowanej procedury mieściły się w zakresie 0,5–1,0 ng/dm³.

Oznaczony poziom zawartości estrogenów był niski, ale może być wystarczający do zakończenia naturalnej równowagi biologicznej organizmów wodnych. Podobny poziom estrogenów stwierdzono w wodach rzek innych państw. W tabeli 4 przedstawiono zawartość tych hormonów w wodach rzecznych w Japonii, Niemczech, Włoszech i Holandii. Zawartości estrogenów w prezentowanych próbkach wód rzecznych różnie nie przekroczyły kilku ng/dm³, a jednak budzą obawy specjalistów.

<table>
<thead>
<tr>
<th>Tabela 2. Warunki analizy estrogenów techniką GC-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromatografia gazowa</td>
</tr>
<tr>
<td>Natężenie przepływu helu przez kolumnę: 1,1 cm³/min</td>
</tr>
<tr>
<td>Temperatura źródła jonów: 290 °C</td>
</tr>
<tr>
<td>Program temperaturowy:</td>
</tr>
<tr>
<td>150 °C (2 min), 12 °C/min do 240 °C, 3 °C/min do 290 °C (10 min)</td>
</tr>
<tr>
<td>Estron</td>
</tr>
<tr>
<td>Estradiol</td>
</tr>
<tr>
<td>Etinylestradiol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabela 3. Zawartość estrogenów w badanych wodach powierzchniowych</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokalizacja</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>estron</td>
</tr>
<tr>
<td>Odra</td>
</tr>
<tr>
<td>Wsta</td>
</tr>
<tr>
<td>Kanał Gliwicki</td>
</tr>
<tr>
<td>gom. – granica oznaczenia metody</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraj</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Japonia</td>
</tr>
<tr>
<td>Niemcy</td>
</tr>
<tr>
<td>Włochy</td>
</tr>
<tr>
<td>Holandia</td>
</tr>
<tr>
<td>gom. – granica oznaczenia metody</td>
</tr>
</tbody>
</table>

Niskie zawartości estrogenów w badanych wodach rzecznych nie przekraczają normalnych, ale te z kolei mogą stanowić wodę zasilającą wód wodospadowych. W osadach dennych stwierdzono obecność estrogenów, ale z kolei mogą stanowić wodę zasilającą wód wodospadowych. W osadach dennych stwierdzono obecność estrogenów, ale z kolei mogą stanowić wodę zasilającą wód wodospadowych. W osadach dennych stwierdzono obecność estrogenów, ale z kolei mogą stanowić wodę zasilającą wód wodospadowych. W osadach dennych stwierdzono obecność estrogenów, ale z kolei mogą stanowić wodę zasilającą wód wodospadowych. W osadach dennych stwierdzono obecność estrogenów, ale z kolei mogą stanowić wodę zasilającą wód wodospadowych. W osadach dennych stwierdzono obecność estrogenów, ale z kolei mogą stanowić wodę zasilającą wód wodospadowych. W osadach dennych stwierdzono obecność estrogenów, ale z kolei mogą stanowić wodę zasilającą wód wodospadowych. W osadach dennych stwierdzono obecność estrogenów, ale z kolei mogą stanowić wodę zasilającą wód wodospadowych.

Ocena przebiegu rozkładu estrogenów w środowisku wodnym jest bardzo trudna. Czas półtrwania tych związanych w wodzie i osadach dennych szacuje się na 2–6 dni [23], wskazując jednocześnie na ich przemiany w środowisku pod wpływem działania mikroorganizmów. O randze problemu świadczą zjawiskowy poziom estrogenów w organizmach wodnych, wyrażony przez współczynnik bioakumulacji tych związanych w wodzie oraz obecność ich w wodach wodospadowych. Wyraźnie się to widać poprzez logarytmiczne zwiększenie bioakumulacji (Bio-accumulation Factor – BCF).
Podsumowanie
Przeprowadzone badania wykazały obecność w wodach rzecznych do tą nie wykrywane w Polsce grupy zanieczyszczeń – biologicznie aktywnych estrogenów – mogących przyczynić się do degradacji środowiska wodnego. Aktywność biologiczna tych związków wykazała również negatywne oddziaływania na procesy rozrodcze ludzi, oddziałując one szczególnie silnie na płód, a efekty ich działania mogą być widoczne dopiero u dorosłego człowieka. Dlatego stężenia estrogenów, w różnych elementach środowiska, a w szczególności w wodach przeznaczonych do spożycia, powinny być kontrolowane, a układy technologiczne uzdatniające wód powinny je całkowicie usuwać. Spłynięcie tak wysokich wymagań dotyczących jakości wody wymusza modernizację metod uzdatniania wody i układów ekspluatujących tradycyjne systemy technologiczne, a także ich rozbudowę o nowe, bardziej efektywne, procesy.

LITERATURA


Abstract: Steroid sex hormones such as estrone (E1), estradiol (E2) and ethinylestradiol (EE2) belong to the compound group that has recently been determined in natural waters of many European countries. Normally, the concentrations of these compounds are very low in an aquatic environment but still sufficient to exert a harmful effect on the endocrine system functions in organisms exposed to estrogens. This results in a serious disorder of reproductive and developmental processes. The present paper includes data that enable the initial risk of estrogen contamination to be assessed for selected rivers of Poland. For the quantitative determination of these estrogens, use was made of gas chromatography/mass spectrometry (GC-MS) analysis method. Estrone, estradiol and ethinylestradiol were present in all of the water samples examined.

Keywords: Surface water, estrogens.