Edward Zbieć, Jan R. Dojlido

Uboczne produkty dezynfekcji wody

Za mechanizm warunkujacy efektywnoś dezynfekcji wody uważa się utlenienie lub zniszczenie ścian komórek, łącznie z konsekwencjami wewnątrzkomórkowej dezintegracji oraz dyfuzję do wnẹtrza komórek i zakłócenie ich procesów życiowych. Aby dezynfekcja była skuteczna, czynnik dezynfekujacy musi spełniać te wymagania [1]. Dezynfekcja wody metodami chemicznymi polega na dawkowaniu do niej silnych utleniaczy, takich jak chlor, podchloryn sodu, dwutlenek chloru, chloraminy, ozon, brom i jod. Wartości normalnych potencjałów redoks (Eh) pozwalaja uszeregować środki dezynfekcyjne według malejacej zdolności utleniajacej:

$$
\begin{equation*}
\mathrm{O}_{3}>\mathrm{ClO}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{J}_{2} \tag{1}
\end{equation*}
$$

Im wiekszy jest potencjał utleniajacy dezynfektanta, tym większa jest jego zdolnosé do utleniania domieszek lub zanieczyszczeń organicznych i nieorganicznych obecnych w wodzie. Potencjałowi utleniajacemu nie odpowiadaja ściśle właściwości bakteriobójcze dezynfektanta, ponieważ zależa one również od jego właściwości dyfuzyjnych, jak np. możliwości penetracji przez błonę komórkowá niszczonego organizmu. Stabilność i czas efektywnego działania dezynfekujacego różnych utleniaczy maleje nastepujaco [2]:
chloraminy>dwutlenek chloru>chlor wolny chlor>ozon
W praktyce do dezynfekcji wody wodociagowej stosuje się chlor i jego zwiazki oraz ozon. Ostatnio, w celu zmniejszenia ilości ubocznych produktów dezynfekcji, zamiast wody chlorowej zaczyna stosować się dwutlenek chloru $\left(\mathrm{ClO}_{2}\right)$ badź chloraminy powstajace w chlorowanej wodzie zawierajacej azot amonowy. W wypadku stosowania ozonu, charakteryzujacego się mała trwałościa, do wody po ozonowaniu należy dodawać dezynfektanty chlorowe. Środki chemiczne stosowane do dezynfekcji charakteryzuja się równoczésnie silnymi whaściwościami dezynfekcyinymi, jak iutleniającymi. Dlatego też w czasie dezynfekcji wód zawierajacych substancje organiczne i inieorganiczne równolegle przebiegaja procesy niszczenia mikroorganizmów patogennych oraz przemiany zwiazków organicznych i nieorganicznych. Większość produktów utleniania nieorganicznych składników wody najczęściej nie pogarsza jakości zdrowotnej wody, natomiast bardzo dużo produktów reakcji zwiazków organicznych zdezynfektantami ma właściwości toksyczne, mutagenne i teratogenne.

Metody analityczne

Olbrzymi postęp w rozwoju chemii analitycznej umożliwił zidentyfikowanie oraz oznaczenie ilościowe wielkiej liczby ubocznych produktów dezynfekcji wody. To z kolei, wraz

[^0]z badaniami biologicznymi, wpłyneło na znaczna modyfikacje procesów uzdatniania wody. Do oznaczeń organicznych produktów ubocznych dezynfekcji używa się najczęściej chromatografii gazowej na kolumnach kapilarnych. Metoda chromatografii gazowej oznacza się około 20% analizowanych związków organicznych, głównie lotnych. Pozostałe 80% zwiazków o małej lotności lub niskiej trwałości termicznej oznacza się metoda chromatografii cieczowej kolumnowej lub cienkowarstwowej. Jako detektorów w chromatografii gazowej używa się najczęściej detektora płomieniowo-jonizacyjnego (FID) oraz detektora wychwytu elektronów (ECD), szczególnie czułego na zwiazki halogenoorganiczne. Inne detektory o specyficznym działaniu używane są rzadziej. Jednym z trudnych problemów występujacych podczas analizy mieszanin różnych zwiazków jest ich identyfikacja. Dużáa pomoca jest tutaj połaczenie chromatografu gazowego ze spektrometrem masowym lub detektorem na podczerwień. Najbardziej pomocnym urzadzeniem jest ostatnio opracowany detektor emisji atomowej, który umożliwia analizę każdego pierwiastka oddzielnie, a zatem i wyznaczenie sumarycznego wzoru badanego zwiazku chemicznego, co zapewnia jego jednoznaczna identyfikacje. Czułość tych detektorów wobec halogenów porównywalna jest z czułościa detektora wychwytu elektronów (ECD). Dokładny opis metod analitycznych można znaleźć w pracach [3,4]. Do analizy nieorganicznych produktów ubocznych dezynfekcji coraz cześciej stosuje się chromatografię jonowa [5]. Próbki do analizy przygotowywane są w różny sposób. Do często używanych metod należá:

- wstrzykiwanie próbek wody bezpośrednio na kolumnẹ przez specjalny dozownik,
- ekstrakcja ciecz-ciecz niepolarnym rozpuszczalnikiem,
- sorpcja na sorbentach stałych (SFE),
- sorpcja na specjalnie preparowanych włóknach, które sa nastẹpnie bezpośrednio wprowadzane do dozownika (SPME),
- analiza fazy nadpowierzchniowej związków lotnych i średniolotnych metoda statyczną i dynamiczna,
- ekstrakcja w stanie nadkrytycznym.

W analityce mikrozanieczyszczeń należy rozróżnić dwa kierunki. Pierwszy, w którym analitycy daża do identyfikacji oraz oznaczenia ilościowego wielu nowych ubocznych produktów dezynfekcji. Prace te wymagaja stosowania bardzo kosztownej aparatury i są bardzo czasochłonne. Drugi - bardzo ważny kierunek ma na celu opracowanie metod kontroli stęzén zwiazków chemicznych już znanych, ale które decyduja o o sposobie prowadzenia procesu uzdatniania wody, a więc służa do kontroli procesu technologicznego. Ten kierunek, intensywnie obecnie rozwijany, prowadzi do uproszczenia aparatury, jej miniaturyzacji i znacznego potanienia. Czas analizy może być więc maksymalnie skrócony. Możliwe jest już także przeprowadzenie analizy grupy zwiazków organicznych w ciagu kilkunastu sekund [6].

Uboczne produkty chlorowania wody

Najbardziej rozpowszechniona i najtańsza metoda dezynfekcji wody jest chlorowanie za pomoca chloru gazowego. W zakładach o niewielkim zużyciu chloru stosuje sięponadto podchloryn sodu (NaOCl) lub wapno chlorowane (CaClOCl). Chlorowanie wody stosuje się również w technologii oczyszczania wody do wspomagania procesu koagulacji, unieszkodliwiania planktonu podczas jego zakwitu, obniżenia zawartości azotu amonowego, a także do utlenienia zwiazków żelaza, manganu, siarkowodoru oraz siarczków. Chlorowanie może być stosowane także do obniżenia intensywności barwy wody, przy czym mechanizm tego procesu nie został dotychczas wyjaśniony.

Podczas reakcji chloru ze zwiazkami organicznymi chlor może być przyłaczony do czasteczki zwiazku organicznego, a także może działać utleniajaco. Dlatego też w czasie chlorowania powstaja liczne produkty uboczne dezynfekcji, takie jak trihalometany, kwasy halogenooctowe, halogenoketony, halogenonitryle, trichlorobenzeny, trichlorofenole oraz hydroksyfurany.

W procesie chlorowania powstaja olbrzymie ilości halogenowych zwiazków organicznych. Sumaryczne ich stężenie określane jest symbolem AOX (absorbowalne halogenowe zwiąki organiczne). Związki te można dodatkowo podzielić na lotne (LAOX) oraz nielotne (NAOX) [7]. Do lotnych należa np. dichlorometan, chloroform, dichlorobromometan, dibromochlorometan, bromoform, tetrachlorometan i szereg innych. Do nielotnych chlorowanych związków organicznych zalicza się haloketony, haloacetonitryle, halopochodne kwasów karboksylowych (najczęściej kwasu octowego - HAA), haloaldehydy, ftalany, aminy i wiele związków aromatycznych. Do zwiazków o bardzo dużej toksyczności należy 3-chloro-4(dichlorometylo)-5-hydroksy-2(5H)-furanon, zwany MX. Zwiazek ten - niedawno wykryty w chlorowanych wodach - jest przedmiotem licznych badań [8]. Bardzo duża grupa wielkoczasteczkowych zwiazków organicznych nie została dotychczas zidentyfikowana.

W celu obniżenia stężenia ubocznych produktów chlorowania stosuje się:

- inne utleniacze, takie jak ozon i dwutlenek chloru,
- usuwanie z wody substancji organicznych (prekursorów) przed procesem utleniania,
- modyfikowanie procesu chlorowania poprzez dodatek amoniaku (chloraminowanie),
-adsorbowanie powstałych halogenów na filltrach węglowych.

Trihalometany

Najlepiej poznana dotychczas grupa ubocznych produktów chlorowania sa trihalometany (THM), które powstaja wraz z innymi zwiazkami chloroorganicznymi, takimi jak chlorofenole, znacznie pogarszajac whaściwości organoleptyczne wody. Głównymi zidentyfikowanymi zwiazkami chloroorganicznymi sa chloroform $\left(\mathrm{CHCl}_{3}\right)$, bromodichlorometan $\left(\mathrm{CHBrCl}_{2}\right)$, dibromochlorometan $\left(\mathrm{CHBr}_{2} \mathrm{Cl}\right)$ i bromoform (CHBr_{3}). Spośród tych czterech zwiazków w największych stężeniach występuje chloroform. Bromowe pochodne zwiazków organicznych powstaja w wodach zawierajacych bromki, które pod wpływem chloru ulegaja utlenieniu do jonów podbromianowych, latwo reagujacych z substancjami organicznymi. Prekursorami THM sa głównie kwasy humusowe, chlorofil „a", metabolity organizmów wodnych, alifatyczne hydroksykwasy,kwasy mono-,di-itrikarboksyloweoraz aromatyczne kwasy karboksylowe [9]. Czynnikami wpływajacymi na wydajność
reakcji sa czas kontaktu z chlorem, pH , temperatura, dawka chloru oraz stężenie i rodzaj prekursorów. Im gorsza jest jakość wody podawanej chlorowaniu, tym więcej powstaje szkodliwych THM. Akademia Nauk Stanów Zjednoczonych uznała haloformy za substancje rakotwórcze [10].

W latach osiemdziesiatych w Stanach Zjednoczonych, Kanadzie i kilku państwach europejskich pod nadzorem Agencji Ochrony Środowiska Stanów Zjednoczonych [11] przeprowadzono szerokie badania nad wystepowaniem trihalometanów w wodzie do picia. Okazało sie, że ich stężenia mieścily się w granicach od 1 do $100 \mathrm{mg} / \mathrm{m}^{3}$, natomiast maksymalne i średnie zawartości poszczególnych halometanów wynosily odpowiednio: dla chloroformu - 331 i $21 \mathrm{mg} / \mathrm{m}^{3}$, dla bromodichlorome-tanu-116i $6 \mathrm{mg} / \mathrm{m}^{3}$, dla dibromochlorometanu- $100 \mathrm{i} 1,2 \mathrm{mg} / \mathrm{m}^{3}$ oraz dla bromoformu - $150 \mathrm{i} 0,2 \mathrm{mg} / \mathrm{m}^{3}$. W Polsce badania takie prowadzono w różnych ośrodkach, m.in. w Poznaniu, Gdańsku, Warszawie i Zielonej Górze [12-17] (tab.1).

Na podstawie badań przeprowadzonych przez ostatnie 15 lat można stwierdzić, że w Polsce wysokie stężenie trihalometanów zaobserwowano w Warszawie na Wodociagu Północnym, gdzie stężenia chloroformu w roku 1990 dochodziły do $76 \mathrm{mg} / \mathrm{m}^{3}$, a sumaryczne stężenie trihalometanów było bliskie $100 \mathrm{mg} / \mathrm{m}^{3}$. Podobnie było w kilku innych miastach, m.in. w Gorzowie Wielkopolskim, Katowicach, Łodzi i Wrocławiu, natomiast w pozostałych miastach stężenia chloroformu były bliskie normy ($30 \mathrm{mg} / \mathrm{m}^{3}$). Badania te - na przykładzie Wodociagu Północnego w Warszawie - pokazały niezwykły postęp, jako dokonał się w dziedzinie uzdatniania wody (rys.1).

Rys. 1. Stężenia THM w wodzie uzdatnionej w Wodociagu Północnym w Warszawie (wartości średnie w latach 1989-1995)
Jak widać w tabeli 1 oraz na rysunku 1, stężenie trihalometanów spadło kilkakrotnie z ponad $100 \mathrm{mg} / \mathrm{m}^{3}$ do około $30 \mathrm{mg} / \mathrm{m}^{3}$. Efekt ten został spowodowany zmiana w technologii uzdatniania, rezygnacja z chlorowania wstępnego i wprowadzeniem ozonowania, co umożliwiło zmniejszenie sumarycznej dawkichloru zokoło $14 \mathrm{gCl}_{2} / \mathrm{m}^{3}$ do około $3 \mathrm{gCl}_{2} / \mathrm{m}^{3}$. Dawka ozonu wynosiła w tym czasie $3 \mathrm{gO}_{3} / \mathrm{m}^{3}$ [16]. Sumaryczne stęzenie trihalometanów w wodzie dostarczanej do miasta z Wodociagu Północnego w 1990 r. zmieniało siẹ sezonowo, przy czym najniższe było zima (ok. $50 \mathrm{mg} / \mathrm{m}^{3}$), a najwyższe w sezonie letnim (ok. $90 \mathrm{mg} / \mathrm{m}^{3}$) (rys.2).

Trihalometany zawieraja głównie $\mathrm{CHCl}_{3}(83,7 \%)$, $\mathrm{CHCl}_{2} \mathrm{Br}(15,4 \%)$ i $\mathrm{CHClBr}_{2}(0,9 \%)$, natomiast bromoform (CHBr_{3}) alho w ogóle nie wystẹpuje lub też pojawia się w ilościach zbliżonych do granicy wykrywalności (>>1,0\%). W czasie badań prowadzonych w Instytucie Meteorologii i Gospodarki Wodnej w Warszawie nad zdolnością powstawania trihalometanów oraz ich zawartościa podczas uzdatniania

Tabela 1. Stężenia THM w wodach wodociagowych, $\mathrm{mg} / \mathrm{m}^{3}$

Miasto	CHCl_{3}	$\mathrm{CHCl}_{2} \mathrm{Br}$	CHClBr_{2}	CHBr_{3}	Suma THM	Pozycja literatury
Gdarisk (1994)	0,1+24,8	nw+12,7	nw+1,2	$n w+1,1$	0,1+39,8	[12]
Gorzow Wielkopolski (1982)	0,3+82,0	0,6+2,5	nw	nw	0,9+84,5	[13]
Katowice (1982)	5,5+129,0	1,2+5,0	nw	nw	6,7+134,0	[13]
Krakow (1982)	6,0+55,5	0,4+5,6	nw	nw	6,4+61,1	[13]
Ł ¢ ¢ 2 (1982)	14,0+110,0	0,6+4,5	nw	nw	14,6+114,5	[13]
Poznañ (1996)	41,6+28,6	0,5+5,0	nw+2,5	nw+5,0	5,1+41,0	[14]
Warszawa, Wod. Centr. (1982)	16,6+37,0	0,6+12,5	nw	nw	17,2+49,5	[13]
Warszawa, Wod. Ptn. (1990)	46,0+76,0	5,2+15,4	0,1+2,4	nw	51,3+93,8	[15]
Warszawa, Wod. Ptn. (1995)	2,4+25,1	1,3+8,7	0,3+1,7	nw	4,0+35,5	[16]
Wroctaw (1982)	8,0+74,0	0,6+8,7	nw	nw	8,6+82,7	[13]
Zielona Góra (1982)	15,0+53,0	3,8+12,5	nw	nw	18,8+65,5	[13]
Zielona Góra (1997)	46,3+53,4	4,1+5,2	nw	nw	50,4+58,6	[16]

Rys. 2. Stężenia THM w wodzie uzdatnionej w Wodociagu Pólnocnym w Warszawie (1990)
wody w Wodociagu Pólnocnym (1990 r.) stwierdzono, że stężenie trihalometanów ciagle wzrastało od momentu pierwszego chlorowania aż do wprowadzenia jej do sieci, pomimo spadku stężenia substancji humusowych (rys.3). W sieci nie zaobserwowano wzrostu stężenia THM, pomimo długiego czasu kontaktu substancji humusowych z chlorem.

Rys. 3. Stężenia THM i substancji humusowych w czasie uzdatniania wody w Wodociagu Pónocnym w Warszawie oraz w sieci (19-06-1990)

Kwasy halogenooctowe

Kwasy halogenooctowe (haloacetic acid - HAA) powstaja ${ }^{w}$ procesie chlorowania wody. Substancje organiczne wysteppujace w wodzie (głównie substancje humusowe), określane jako prekursory HAA, ulegaja przemianom pod wpływem chloru, tworzac kwasy halogenooctowe, głównie kwasy chlorooctowe. Kwasy halogenooctowe stanowia druga istotna grupe zwiazków powstajacych podczas chlorowania wody. Niektóre z nich, np. kwas dichlorooctowy i trichlorooctowy, sa również uznane za rakotwórcze. Głównymi przedstawicielami tej grupy są następujace
kwasy: chlorooctowy ($\mathrm{CH}_{2} \mathrm{ClCOOH}-\mathrm{MCAA}$), bromooctowy $\left(\mathrm{CH}_{2} \mathrm{BrCOOH}-\mathrm{MBAA}\right)$, dichlorooctowy $\left(\mathrm{CHCl}_{2} \mathrm{COOH}-\right.$ DCAA), trichlorooctowy ($\mathrm{CCl}_{3} \mathrm{COOH}-\mathrm{TCAA}$), dibromooctowy ($\mathrm{CHBr}_{2} \mathrm{COOH}$ - DBAA). Stwierdzono, ze w wodzie występuja także następujace kwasy: tribromooctowy ($\mathrm{CBr}_{3} \mathrm{COOH}$ TBAA), bromochlorooctowy ($\mathrm{CHBrClCOOH}-\mathrm{BCAA}$), dibromochlorooctowy ($\mathrm{CBr}_{2} \mathrm{ClCOOH}$-DBCAA), dichlorobromooctowy ($\left.\mathrm{CCl}_{2} \mathrm{BrCOOH}-\mathrm{DCBAA}\right)$.
Zawartość kwasów halooctowych badano w dwudziestu wodach do picia w Holandii [18]. Ich obecność stwierdzono tylko w wodach uzyskanych z ujęć powierzchniowych, natomiast nie występowały one w wodach pochodzacych z ujęć podziemnych. Stezzenia kwasów halooctowych wynosiły od 0 do $14,7 \mathrm{mg} / \mathrm{m}^{3}$, przy czym najczęściej wystẹpujacymzwiazkiem był kwas dibromooctowy, natomiast formy bromowane siegały do 65% całkowitej zawartości HAA. Stężenia indywidualnych HAA w wodach do picia z dwudziestu wodociagów w Holandii były nastepujace: DCAA $-0,2 \div 3,0 \mathrm{mg} / \mathrm{m}^{3}$, DBAA$0,1 \div 6,5 \mathrm{mg} / \mathrm{m}^{3}, \mathrm{MBAA}-0,1 \div 0,5 \mathrm{mg} / \mathrm{m}^{3}, \mathrm{DCBAA}-0,1 \div 1,7 \mathrm{mg} / \mathrm{m}^{3}$, BCAA $-0,1+2,5 \mathrm{mg} / \mathrm{m}^{3}$, DBCAA $-0,2+1,6 \mathrm{mg} / \mathrm{m}^{3}$, TCAA $0,1+1,4 \mathrm{mg} / \mathrm{m}^{3}$, TBAA $-0,3 \div 2,1 \mathrm{mg} / \mathrm{m}^{3}$.

Przebadano także zawartość kwasów HAA w 35 stacjach uzdatniania wody w stanie Utah (USA) [19]. Średnie steżenie HAA w wodzie uzdatnionej wynosiło $17,3 \mathrm{mg} / \mathrm{m}^{3}$, natomiast w sieci wodociagowej stężenie HAA wzrastało (wartości byly bliskie 7-dobowemu testowi potencjału tworzenia). Najwyższe wartości HAA wystapiły latem i jesienia, a malały zima i wiosna, przy niskich temperaturach. W procesie chlorowania wody powstaja różne kwasy, nie tylko HAA. Zidentyfikowano kwasy alifatyczne od octowego (C_{2}) do oktanosanowego (C_{28}) [20]. Stwierdzono obecność w wodach wielu aromatycznych kwasów karboksylowych. Zaobserwowano wysteppowanie takich kwasów, jak chlorobutenoesowy, tetrachloropentenoesowy, chlorobenzeosowy, 2,4-dichlorofenylooctowy i inne.

Badania zawartości kwasów halooctowych w wodzie z Wodociagu Pótnocnego w Warszawie

W Instytucie Meteorologii i Gospodarki Wodnej w Warszawie przeprowadzono badania kwasów halooctowych w wodzie z Wodociagu Północnego w Warszawie. Woda ujmowana jest z Zalewu Zegrzyńskiego, zawierajacego znaczne steżenia substancji humusowych. Woda po takich procesach technologicznych jak ozonowanie, koagulacja, filtracja i chlorowanie dostarczana jest do pófnocnych części Warszawy. Badania zawartości kwasów halooctowych oraz innych parametrów związanych z powstawaniem HAA przeprowadzono w latach 1995 i 1996 [21].

W wodzie surowej, pobieranej z Zalewu Zegrzyńskiego, stwierdzono bardzo małe (śladowe) stężenia HAA, a często były to wartości niewykrywalne. Ozonowanie wody spowodowało bardzo mały przyrost zawartości HAA. Bardzo często nie obserwowano nawet żadnego wzrostu ich stężenia. Po chlorowaniu wody zaobserwowano istotny przyrost zawartości kwasów halooctowych, przy czym gwałtowny wzrost ich stężenia nastapił już po pierwszym chlorowaniu w Wieliszewie, a kolejny - po drugim chlorowaniu w Białołęce. W sieci wodociągowej, gdzie również w wodzie występował chlor i była możliwość powstawania kwasów, sytuacja kształtowała się różnie, w zależności od rodzaju kwasu. Wzrost zawartości HAA w sieci zaobserwowano dla kwasów chlorooctowego, bromooctowego i dibromooctowego. Zawartosć kwasu trichlorooctowego w sieci utrzymywała się na podobnym poziomie jak po chlorowaniu w Białołęce, a w wypadku kwasu dichlorooctowego zaobserwowano spadek jego zawartości w sieci. Dla sumy kwasów wystạpił mały spadek zawartości w sieci, w stosunku do wody bezpośrednio po chlorowaniu. Analizujac skład powstałych kwasów halooctowych stwierdzono, że największy udział miał kwas dichlorooctowy (44\%), a następnie kwas trichlorooctowy (40\%). Znacznie mniejsze były stężenia kwasu monochlorooctowego (12\%), natomiast stężenia kwasów bromooctowego i dibromooctowego były niskie i wynosiły po około 2%. Stężenia powstajacych kwasów halooctowych zmieniały się w czasie, w zależności od pory roku (rys.4).

Rys. 4. Zmlany stężeń sumy HAA w wodzie uzdatnionej na terenie miasta
Najniższe wartości wykryto w okresie zimy (styczeń, luty, marzec), kiedy to suma HAA wynosiła około $10 \mathrm{mg} / \mathrm{m}^{3}$, natomiast najwyższe wartości wystapiły w maju i czerwcu (suma HAA osiaggała wartość $100 \mathrm{mg} / \mathrm{m}^{3}$ (rys.4). Wiosną i jesienia stężenia kwasów były mniejsze, suma HAA mieściła się w zakresie $20 \div 50 \mathrm{mg} / \mathrm{m}^{3}$. Zmiana stężeń poszczególnych kwasów w czasie była różna, ale charakter zmian był taki sam, jak dla sumy kwasów. Przeanalizowano charakter tych zmian na tle innych składników wody i procesów uzdatniania. W wodzie surowej oznaczono następujace parametry charakteryzujące zawartość substancji organicznych - potencjalnych prekursorów HAA: barwę wody, ChZT, absorbancję w UV, zawartość ogólnego węgla organicznego i rozpuszczonego węgla organicznego oraz zawartość substancji humusowych. Stwierdzono pewną zależność, która wskazywała, że przy większych zawartościach materii organicznej (prekursorów) powstawało więcej kwasów halooctowych (rys.5).

W maju i czerwcu, gdy wystapiły najwyższe stężenia HAA, zawartości materii organicznej w wodzie surowej były najwyższe. Zaobserwowano bardzo istotna zależność stężeń powstałych kwasów halooctowych od temperatury wody surowej (rys.6).

Rys. 5. Zależnosć stężeń sumy HAA od stężenla substancij humusowych

Rys. 6. Zależność stężńn sumy HAA od temperatury ujmowanej wody
Przy niskich temperaturach (styczeń, luty, marzec) powstawaly niewielkie ilości kwasów, natomiast przy wysokich temperaturach wody surowej ($20^{\circ} \mathrm{C}$ w maju i czerwcu) wystapiły najwyższe stężenia HAA. Można stąd wnioskować, że reakcja powstawania kwasów jest istotnie zależna od temperatury wody i że zachodzi pełniej w wyższych temperaturach. Analizujac wpływ dawki chloru i ozonu na powstawanie HAA nie stwierdzono istotnej zależności, chociaż zaobserwowano pewna tendencje zmian. W czasie występowania wysokich stężeń HAA stosowano podwyższone dawki chloru. Równocześnie z danymi o zawartości kwasów halooctowych dysponowano informacjá o zawartości trihalometanów w wodzie uzdatnionej. Stwierdzono zadziwiajacą zgodność zmian stẹżeń w czasie (rys.7).

Rys. 7. Stężenia sumy THM i HAA w wodzie uzdatnionej (dane THM z Wodociagu Pónocnego)
Przy wysokich stężeniach THM występowały wysokie stężenia HAA, a przy niskich zawartościach THM małe zawartości HAA. Świadczyć to może o istnieniu tych samych powodów powstawania THM HAA w wodzie poddanej dezynfekcji, a tymi powodami sa głównie prekursory organiczne i temperatura wody.

Uboczne produkty ozonowania

W praktyce wodociagowej ostatnich lat obserwuje się stała tendencję do eliminowania chloru, który stosuje się najczęściej tylko w końcowym etapie uzdatniania wód powierzchniowych do dezynfekcji, natomiast coraz szerzej stosuje się ozon, i to na różnych etapach uzdatniania wody [22]. Ozon stosowany jest do ozonowania wstępnego przed koagulacja, która ma na celu:

- obniżenie intensywności barwy wody,
- utlenienie związków nieorganicznych, np. cyjanków, siarczków, azotynów, związków żelaza i manganu,
- poprawę smaku i zapachu wody,
- ułatwienie mikroflokulacji,
- obniżenie potencjału tworzenia THM i innych związków chloroorganicznych,
- zaspokojenie niezwłocznego zapotrzebowania na ozon,
- obniżenie liczebności glonów.

Zwykle stosuje się dawkę około $1 \mathrm{gO}_{3} / \mathrm{m}^{3}$ wody przy czasie kontaktu $1 \div 2 \mathrm{~min}$. Ozonowanie końcowe stosowane jest po procesie koagulacji i filtracji. Ma ono na celu:

- dezynfekcję wody,
- utlenienie zwiazków organicznych, np. fenoli, detergentów, pestycydów, zwiazków kompleksowych (EDTA - kwas etyleno-diamino-tetraoctowy, NTA - kwas aminotrioctowy),
- przemianę zanieczyszczeń do postaci biodegradowalnej,
- obniżenie dawek reagentów wymaganych do ochrony sieci wodociagowych,
- obniżenie stężenia rozpuszczonego węgla organicznego w wypadku połaczenia ozonowania z sorpcja na granulowanym weglu aktywnym lub filtracja powolna.

Można stosować również dodatkowo nadtlenek wodoru w celu przyspieszenia usuwania pestycydów lub innych trwałych
związków organicznych. Dawki ozonu nie przekraczaja zwykle $4 \mathrm{gO}_{3} / \mathrm{m}^{3}$ wody, przy czasie kontaktu 4 min . Ozon reaguje z zanieczyszczeniami wody wg dwóch mechanizmów, tj. poprzez ich bezpośrednie utlenienie lub poprzez reakcję reaktywnych rodników powstałych z rozkładu O_{3}.

Pierwszy mechanizm oparty o bezpośrednie utlenienie jest selektywny. Podlegaja mu dwuwartościowe zwiazzi żelaza i manganu, siarkowodór oraz zwiazki organiczne zawierajace grupy olefinowe. Drugi mechanizm (pośredni poprzez rodniki) jest mało selektywny. Rodniki reaguja ze wszystkimi związkami organicznymi zawierajaccymi wiązania nienasycone. W wyniku tej reakcji powstaja nadtlenki, aldehydy, ketony, kwasy alifatyczne, $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{i}$ inne produkty pośrednie. Podczas badań pilotowych nad ozonowaniem wody z rzeki Mississipi zidentyfikowano kilkanaście aldehydów, ketonów, kwasów karboksylowych [23], które również byly wykryte wcześniej podczas ozonowania kwasów humusowych [26] (tab.2). Zestawione w tabeli produkty uboczne oznaczono półilościowo, a ich stężenia zawarte były w granicach od $5 \mu \mathrm{~g} / \mathrm{m}^{3}$ do $3 \mathrm{mg} / \mathrm{m}^{3}$. Zmianę stężeń aldehydów podczas uzdatniania wody powierzchniowej w jednym z wodociaggów miejskich w Stanach Zjednoczonych przedstawiono w tabeli 3 [24]. Wyniki podobnych badań przeprowadzonych w Wodociagu Północnym w Warszawie zestawiono w tabeli 4 [15].

W wodzie surowej zawierajacej tylko formaldehyd (tab.3), po końcowym ozonowaniu stwierdzono znaczne ilości aldehydów, tj. formaldehydu, acetaldehydu, pentanolu i glioksalu oraz metyloglioksalu w granicach $10+30 \mathrm{mg} / \mathrm{m}^{3}$. Pozostałe aldehydy występowały w znacznie mniejszych ilościach $3 \div 4 \mathrm{mg} / \mathrm{m}^{3}$. Stężenie większości aldehydów wyraźnie wzrastało wraz ze wzrostem dawki ozonu (ozonowanie wstępne i końcowe). Filtracja i późniejsze chloraminowanie obniżyły wyraźnie tylko stężenie pentanolu, heptanolu, glioksalu i metyloglioksalu, natomiast stężenia pozostałych aldehydów w zasadzie się nie zmieniły.

Tabela 2. Uboczne produkty ozonowania wody powierzchniowej

Aldehydy	Ketony	Kwasy karboksylowe	Inne produkty
Formaldehyd	Aceton	Kwas 2-metylopropionowy	Benzoacetonitryl
Acetaldehyd	Keton metyloetylowy	Kwaspentanokarboksylowy	
Propanal	3-Metylo-2-butanon	Kwas2-metylopentanokarboksylowy	
Butanal	Keton metylopropylowy	Kwas t-butylomaleinowy karboksylowy	
Pentanal	2-Heksanon	Kwas benzeosowy	
Heksanal	3-Heksanon		
Heptanal	3-Metylocyklopentan		
Octanal	6-Metylo-5-hepten-2-on	Heptadecadienon	
Nonanal	Glioksal dimetylowy		
Decanal			
Benzaldehyd			
Glioksal			
Glioksal metylu			

Tabela 3. Aldehydy tworzące się po różnych etapach uzdatniania wody powierzchniowej, $\mathrm{mg} / \mathrm{m}^{3}$

Związek	Woda					
	surowa	po dawkowaniu KMnO_{4}	po ozonowaniu wstępnym	po chloraminowaniu	po ozonowanlu koricowym	po filtracji ichloraminowaniu
Formaldehyd	3,2	3,0	18,1	16,0	28,3	25,4
Acetaldehyd	nd	nd	3,2	5,1	9,7	9,5
Propanal	nd	nd	2,2	nd	2,7	2,6
Butanal	nd	nd	4,2	3,0	4,1	3,1
Pentanal	nd	nd	7,4	9,7	15,2	4,8
Heptanal	4,6	3,6	9,2	nd	3,7	2,3
Glioksal	nd	nd	5,9	7,4	13,0	nd
Metyloglioksal	nd	nd	7,3	15,8	28,3	nd

Tabela 4. Stężenie aldehydów po różnych etapach uzdatniania wody w Wodociagu Pórnocnym w Warszawie (18-11-1998), $\mathrm{mg} / \mathrm{m}^{3}$

Zwlązek	(1)	(2)	(3)
Formaldehyd	1,05	16,1	15,7
Acetaldehyd	0,97	26,0	25,1
Heptanal	0,50	20,0	27,1
Benzaldehyd	0,16	2,1	4,3
Glioksal	0,41	11,7	12,1
Metyloglioksal	0,52	24,1	20,3

(1) woda surowa, (2) woda po ozonowaniu i pulsatorach, (3) woda po filtrach

Wyniki badań przeprowadzone na Wodociagu Północnym (tab.4) wskazuja, że woda surowà zawierała też tylko formaldehyd. Po wstępnym ozonowaniu powstawały aldehydy w zbliżonych ilościach $12 \div 26 \mathrm{mg} / \mathrm{m}^{3}$ oprócz benzaldehydu, którego powstawało znacznie mniej, $\mathrm{tj} .2,1 \mathrm{mg} / \mathrm{m}^{3}$. Filtracja wody na filtrach pospiesznych w zasadzie nie wpływała na zmianę stężeń aldehydów.

Ozon obniża intensywność barwy wód powodowana przez rozpuszczone kwasy humusowe, lecz tylko nieznaczna czẹść kwasów humusowych ulega całkowitemu utlenieniu. Większość przekształca się w inne niskoczasteczkowe zwiazki organiczne, które sa słabo zabarwione. W czasie ozonowania następuje na ogól poprawa smaku i zapachu wody [26]. Zwiazki chemiczne nadajace wodzie zapachy ziemiste, apteczne, rybne, pleśni itp. ulegaja rozkładowi. Powstaja natomiast inne o przyjemniejszym zapachu, np. owocowym. Łaczy się to z powstaniem niektórych aldehydów [27].

Ozon reaguje z wieloma związkami organicznymi, które ulegają niemal całkowitemu rozkładowi, przekształcajac się w szereg innych zwiazków. Z ozonem reaguja wielopierścieniowe węglowodory aromatyczne, detergenty, fenole, pestycydy fosfo-ro- i azotoorganiczne. Dla przykładu, reakcja rozkładu fenolu z ozonem powoduje powstanie chydrochinionu, pirakatechiny, kwasu mueonikowego, aldehydu maleinowego, kwasu maleinowy, kwasu fumarowego, kwasu szczawiowego, kwasu glioksalowego, glioksalu i kwasu mrówkowego. Pestycydy chloroorganiczne oraz ropopochodne sa odporne na działanie ozonu [28].

Ozon utlenia zawarte w wodzie mikrozanieczyszczenia, zarówno nieorganiczne jak i organiczne. Cyjanki utleniane sa do wodorowęglanów i azotu, siarkowodór do siarczanów, azotyny do azotanów itp. Ozonowanie wody zawierajacej bromki i znaczne ilości produktów organicznych prowadzi do powstawania bromoformu i bromianów. Powstaja również kwasy bromooctowe i bromoacetonitryle [28], ktore stwarzają poważne zagrożenie dla zdrowia. Chlorowanie wody uprzednio ozonowanej powoduje z reguły powstawanie niższych stężeń haloformów.

Uboczne produkty chlorowania dwutlenkiem chloru

Dwutlenek chloru - obok ozonu - jest coraz częściej stosowany do dezynfekcji lub utleniania zamiast chloru gazowego. Używany jest już niemal w 500 zakładach wodociagowych w Stanach Zjednoczonych. Wytwarza niewielkie ilości ubocznych produktów dezynfekcji, nie tworzy trihalometanów [29]. Dwutlenek chloru $\left(\mathrm{ClO}_{2}\right)$, ze wzglẹdu na swoje właściwości wybuchowe, wytwarzany jest na miejscu w zakładach wodociagowych. Najczệsciej jest wytwarzany z chlorynu sodu $\left(\mathrm{NaClO}_{2}\right)$ i kwasów solnego lub siarkowego. Można go również otrzymywać w reakcji chlorynu sodu z chlorem. Dwutlenek chloru stosuje się do:

- obniżenia intensywności barwy wody,
- poprawy jej smaku i zapachu,
- obniżenia liczebności glonów, co ułatwia koagulacje,
-utlenienia wielu zwiazków organicznych i nieorganicznych.
W czasie badań pilotowych nad oczyszczaniem wody rzecznej w zakładach wodociagowych Evansville (Ind., USA) [30] stosowano dwutlenek chloru oraz dwutlenek chloru i chlor do wtórnego chlorowania. Zidentyfikowane produkty uboczne zestawiono w tabeli 5 . Stwierdzono brak powstawania THM, niemal wszystkie zwiazki zawierały w swoich strukturach tlen (kwasy karboksylowe, ketony, estry). Znaleziono jedynie dwa związki chlorowane i kilka związków aromatycznych. W porównaniu z chlorowaniem jest to bardzo niewiele [30], gdzie stwierdzono $3 \div 5-\mathrm{krotnie}$ większą liczbę pótproduktów, a w literaturze opisano ponad 300 produktów ubocznych chlorowania, w tym 200, które zawieraja chlor lub brom. Gdy chlor był zastosowany do drugiego chlorowania po dwutlenku chloru, wówczas pojawiło się znacznie więcej chlorowych i bromowych pochodnych organicznych, w tym halometany halopropany, haloketony, haloacetonitryle, haloaldehydy i inne związki halogenoorganiczne, oprócz wykrytych już poprzednio kwasów karboksylowych (tab.6). Ponieważ związki haloorganiczne powstaja pod działaniem chloru jako drugiego dezynfektanta, zamiast chloru należy stosować chloraminy lub dwutlenek chloru.

Zamiana chloru na dwutlenek chloru w wodociagach w Bremie spowodowała znaczne obniżenie stężeń powstających halometanów. Podczas chlorowania chlorem gazowym w dawkach $0,5 \div 5,0 \mathrm{gCl}_{2} / \mathrm{m}^{3}$ powstawały trihalometany w stẹżeniach $22,7 \div 127,9 \mathrm{mg} / \mathrm{m}^{3}$, natomiast po zastosowaniu dwutlenku chloru w dawkach w tych samych ilościach powstawały trihalometany w stężeniach $0,8 \div 2,2 \mathrm{mg} / \mathrm{m}^{3}$. Stwierdzono ponadto, że podczas działania czystego ClO_{2} (bez Cl_{2} i NaOCl) na kwasy humusowe powstawały tylko kwasy karboksylowe, a nie trihalometany.

Tabela 5. Uboczne produkty chlorowania wody dwutlenkiem chloru

Kwasy karboksylowe	Związki zawierające chlor	Inne zwiazki
Butanokarboksylowy	1,1,3,3-Tetrachloro-2-propanon	Ketony:
Pentanokarboksylowy	(1-Chloroetylo)dimetylobenzen	2,3,4-Trimetylocyklopent-2-en-1-on
Heksanokarboksylowy		$2,6,6$-Trimetylo-2-cykloheksen-1,4-dion
Heptanokarboksylowy		
2-Etyloheksanokarboksylowy		Estry:
Oktanokarboksylowy		
Nonanokarboksylowy		Zwlazki aromatyczne:
Dekanokarboksylowy		3-Etylostyren
Undekanokarboksylowy		2-Etylostyren
Tridekanokarboksylowy		Etylobenzaldehyd
Tetradekanokarboksylowy		Naftalen
Heksanokarboksylowy		2-Metylonaftalen
2-Tert-butylomaleinowy		1-Metylonaftalen
2-Etylo-3-metylomaleinowy		
Benzoesowy		

Tabela 6. Uboczne produkty chlorowania wody dwutlenkiem chloru i chlorem

Kwasy karboksylowe	Haloalkany	
Butanokarboksylowy	Bromodichlorometan	Haloketony:
Pentanokarboksylowy	Dibromochlorometan	1,1,1-Trichloro-2-propanon
Heksanokarboksylowy	Bromoform	1-Bromo-1,1-dichloro-2-propanon
Heptanokarboksylowy	Chlorotribromometan	$1,1,3,3$-Tetrachloro-2-propanon
2-Etyloheksanokarboksylowy	Tetrachlorobutan	$1,1,1,3,3$-Pentachloro-2-propanon
Oktanokarboksylowy		2-Chlorocykloheksanon
Nonanokarboksylowy		Haloacetonitryle:
Dekanokarboksylowy		Dibromochloroacetonitryl
Undekanokarboksylowy		Dibromoacetonitryl
Tridekanokarboksylowy		Haloaldehydy:
Tetradekanokarboksylowy		Dichlorobutanal
Heksanokarboksylowy		Inne zwlazki halogenowe:
2-Tert-butylomaleinowy		1-Chloroetanoloctan
2-Etylo-3-metylomaleinowy		
Benzoesowy		3-Bromopropyl-chlorometyleter
		1,4-Dichlorobenzen
		2-Metyl-3,3-dichloropropenyl-dichlorometyl-eter
		1-Chloroetyl-dimetylbenzen

Tabela 7. Powstawanie trihalometanów pod dziataniem mieszaniny $\mathrm{ClO}_{2} \mathrm{i} \mathrm{Cl}_{2}$ w wodzie zawierajacej bromki ($\mathrm{mg} / \mathrm{m}^{3}$)

W / W	CHCl_{3}	CHBrCl_{2}	$\mathrm{CHBr}_{2} \mathrm{Cl}$	CHBr	THM
$0 / 5$	$57,8 \pm 1,6$	$12,9 \pm 1,1$	$46,4 \pm 1,2$	$428,4 \pm 12,5$	$549,4 \pm 3,4$
$1 / 5$	$6,7 \pm 0,7$	$6,5 \pm 0,4$	$25,9 \pm 0,8$	$383,3 \pm 13,8$	
$5 / 5$	$5,9 \pm 0,9$	$3,3 \pm 0,8$	$14,4 \pm 0,7$	$365,4 \pm 12,1$	
$10 / 5$	$5,1 \pm 0,4$	$2,0 \pm 0,5$	$234,1 \pm 13,2$		
$15 / 5$	$5,1 \pm 0,4$	$2,1 \pm 0,3$	$6,6 \pm 1,1$	$289,0 \pm 7,6$	

Stężenie kwasów humusowych $2,0 \mathrm{~g} / \mathrm{m}^{3}$, stęzenie bromków $5,0 \mathrm{~g} / \mathrm{m}^{3}, \mathrm{pH}=6,7$, temp. $25^{\circ} \mathrm{C}, \mathrm{czas} 24 \mathrm{~h}$

Stosowany w wodociagach techniczny ClO_{2} zawiera zawsze pewne ilości wolnego chloru, dlatego też w wodzie podczas stosowania ClO_{2} powstaja pewne ilości związków halogenoorganicznych. Podczas badań laboratoryjnych nad działaniem ClO_{2} na wode zawierajaca kwasy humusowe stwierdzono [31], że nie tworzyły się trihalometany, jednak po dodaniu do wody bromków, ClO_{2} utleniał bromki do bromowodoru, który reagujac z kwasami humusowymi tworzył THM, w tym glównie bromoform. Natomiast podczas działania mieszaniny ClO_{2} i Cl_{2} na wodę, która nie zawierała bromków, powstawały THM (najwięcej chloroformu), a w obecności bromków powstawały wszystkie cztery podstawowe pochodne trihalometanów (tab.7). Należy podkreślić wplyw światła na przebieg reakcji haloformowej, gdyż naświetlanie sprzyja przebiegowi reakcji haloformowej.

W obecności $\mathrm{ClO}_{2} \mathrm{w}$ wodzie powstaja również chloryny $\left(\mathrm{ClO}_{2}^{-}\right)$i chlorany $\left(\mathrm{ClO}_{3}{ }^{-}\right)$w stężeniach zależnych od warunków procesu technologicznego. Moga one powodować patologiczne zmiany we krwi, anemię i methemoglobinemię. Dwutlenek chloru reaguje z różnymi związkami organicznymi zawartymi w wodzie, tworzy aldehydy, z fenolem daje kwasy karboksylowe [28], nie reaguje natomiast z nasyconymi węglowodorami alifatycznymi. Dwutlenek chloru, a właściwie kwas podchlorowy, w reakcji z alkenami daje chlorohydryny, aldehydy oraz alfa-chloro-i alfa- nienasycone ketony. Dotychczas bardzo mało wiadomo o szkodliwości produktów reakcji $\mathrm{ClO}_{2} \mathrm{z}$ zanieczyszczeniami wody.

Podsumowanie

Do dezynfekcji wody we współczesnych instalacjach wodociagowych stosuje się głównie chlor, dwutlenek chloru i ozon. Chemikalia te sa silnymi utleniaczami, dlatego też sa również często stosowane jako czynnik technologiczny. Podczas dezynfekcji chemikalia te reaguja z mikrozanieczyszczeniami wody tworząc szkodliwe dla zdrowia - czẹsto
kancerogenne - uboczne produkty dezynfekcji. Stosunkowo najmniej tych produktów powstaje podczas dezynfekcji wody dwutlenkiem chloru i ozonem. Dlatego też obserwuje się obecnie ogólnoświatowa tendencje do eliminowania chloru gazowego i zastępowanie go ozonem i dwutlenkiem chloru. Należy jednak zaznaczyć, że dotychczas nie zidentyfikowano wszystkich produktów ubocznych, jakie tworza ozon i dwutlenek chloru w wodzie oraz ich właściwości toksycznych.

LITERATURA

1. J. M. MONTGOMERY: Water treatment principles and design. A Wiley and Sons, Inc., Intersci. Publ., New York 1985.
2. J. C. HOFF, E. E. GELDREICH: Comparison of the biocidal efficiency of alternative disinfectants. Journal AWWA, 1981, No. 1, pp. 40.
3. Z. WITKIEWICZ: Podstawy chromatografii. WNT, Warszawa 1995.
4. J. BARTULEWICZ, J. GAWLOWSKI, E. BARTULEWICZ: Pobieranie i przygotowywanie próbek do analizy zanieczyszczzń organicznych metodami chromatografii. PIOŚ, Biblioteka Monitoringu Środowiska, Warszawa 1996.
5. R. MICHALSKI: Oznaczanie bromianów i innych nieorganicznych anionów w wodach techniką chromatografii jonowej. Mat. symp. „Problemy analitycznego oznaczania substancji rakotwórczych w wodach", PZH, Warszawa 1997, ss. 70-78.
6. Micro-GC Gas Chronnatograph. Varian Chronpack. IMGW, Warszawa 1999.
7. J. R. DOJLIDO: Chemia wód powierzchniowych. Wyd. Ekonomia i Środowisko, Białystok 1995.
8. J. NAWROCKI: Struktura i wlasności związku mutagennego MX, zidentyfikowanego w wodzie pitnej. Ochrona Środowiska, 1992, nr 2-3(46-47), ss. 11-24.
9. J. C. MORRIS, G. McKAY: Formation of halogenated organics by chlorination of water supplies. US EPA, Washington 1975.
10. National Academy of Science: Epideniological studies of cancer frequency and certain organic constituents of drinking water - a review of recent literature published and unpublished, Washington DC 1979.
11. J. M. SYMONS et al.: Treatment techniques for controlling trihalomethanes in drinking water. Journal AWWA, 1975, No. 67, p. 634.
12. M. BIZIUK: Metody izolacji i oznaczania lotnych związków chloroorganicznych oraz wybranych pestycydów w wodach naturalnych i uzdatnionych. Rozprawa hab., Gdańsk 1994.
13. S. BIŁOZOR, P. WIŚNIEWSKI, M. ADAMCZEWSKA: Występowanie trójhalometanów w wodzie niektórych wodociagów w Polsce. Gaz, Woda i Tech. Sanit., 1982, nr 56, ss. 203-205.
14. M. ADAMCZEWSKA, J. SIEPAK: Metodyczne aspekty oznaczania trihalometanów w wodach pitnych. Mat. symp. „Problemy analityczne oznaczania substancji rakotwórczych w wodach", PZH, Warszawa 1997, ss. 110-120.
15. J. R. DOJLIDO, E. ZBIEĆ: Materiały nie publikowane. IMGW, Warszawa 1990.
16. B. MISZTAK: Historia i technologia wodociagów warszawskich. Mat. sesji „Osiągnięcia i nowe rozwiązania techniczne w zakresie wodociągów i kanalizacji w m. st. Warszawie", MPWiK, Warszawa 1996, ss. 31-65.
17. Z. HRYNKIEWICZ: Zmiana zawartości mikrozanieczyszczeń w wodzie w czasie jej oczyszczania i przesyłania. Mat. konf. „Ujmowanie i uzdatnianie wód", PZITS, Zielona Góra 1997, ss. 99-107.
18. R. I. B. PETERS, C. ERKELENS, E. W. B. LEER, L. GLAN: The analysis of halogenated acetic acids in Dutch drinking water. Wat. Res., 1990, No. 4, pp. 473-477.
19. E. NIEMINSKI, S. CHAUDHURI, P. LAMOREAUX: The occurence of DBPs in Utah drinking waters. Journal AWWA, 1993, No. 9, pp. 98-105.
20. E. De LEER, J. DAMSTE, C. ERKELENS, L. GALAN: Identification of intermediates leading to chloroform and C-4 diacids in the chlorination of humic acids. Environ Sci. Technol., 1985, No. 19, pp. 512-522.
21. J. R. DOJLIDO, E. ZBIEĆ: Kwasy halogenooctowe w wodzie do picia. Gaz, Woda i Technika Sanitarna, 1998, nr 5, ss. 221-225.
22. J. AEPPLI, P. DYER-SMITH, J. PLUMRIDGE: Stosowanie ozonu w praktyce uzdatniania wody w Wielkiej Brytanii. Ochrona Środowiska, 1997, ur 3(66), ss. 23-28.
23. S. D. RICHARDSON, A. D. THRUSTON, T. W. PATERSON, B. W. LYKINS: Multispectral identification of ozonation by-products in drinking water. Proc. conf. "Mass Spectrometry and Allied Topics", Atlanta 1995.
24. W. H. GLAZE, H. S. WEINBERG: Identification and occurrence of ozonation by-products in drinking water. AWWA Res. Foundation, Denver 1993, pp. 13-18.
25. W. H. GLAZE, M. KOGA, D. CANCILA: Ozonation byproducts. Improvement of an aqueous-phase derivatization method for detection of formaldehyde and other carbonyl compounds formed by the ozonation of drinking water. Water Environ. Sci. Technol., 1989, No. 23(7), p. 838.
26. B. THORELL, H. BOREN, A. GRIMVAL, A. NYSTROMA: Characterization and identification of odour compounds in ozonated water. Water Sci. Technol., 1992, No. 2, p. 139.
27. J. NAWROCKI, J. KALKOWSKA: Ozonation by-products and their analysis. Pol. Journal of Environ. Study, 1995, No. 4, p. 5.
28. S. BIŁOZOR: Silne utleniacze w technologii uzdatniania wody i uboczne produkty ich stosowania. Gosp. Wodna, 1985, nr 12, s. 285.
29. D. GATES: Personal communication. Vulcan Chemical Technologies, Inc., Sacramento, Calif.
30. S. D. RICHARDSON, A. D. THRUSTON, T. W. COLLETTE: Multispectral identification of chlorine dioxide desinfection by-products in drinking water. Environ. Sci. Technol., 1994, No. 28, pp. 592-599.
31. J. WEN LI, Z. YU, X. CAI, M. GAO, F. CHAO: Trihalomethanes formation in water treated with chlorine dioxide. 1996, No. 10, pp. 2371-2376.

By-Products of Water Disinfection

Three oxidants have found wide acceptance in water disin-fection-chlorine, chlorine dioxide and ozone. Of these, chlorine has been preferred for the past decades. Unfortunately, chlorine has the inherent disadvantage of reacting with the micropollutants present in the water to produce derivatives of the halogen group, which are all cancerogenic or mutagenic compounds. Thus, in order to overcome the problem of chlorine derivative formation, the use of ozone as disinfectant has become more and more frequent. But it soon became obvious that the reaction of ozone with waterpollutantsyielded equally hazardous products, mostly carbonyl derivatives and bromoacetonitriles. Although ozone is a strong biocide, it is seldom used singly because of its
instability. The most frequent use of ozone as disinfectant is in combination with chlorine or chlorine dioxide, which, again leads to the formation of a number of toxic by-products. The mechanisms that govern the production of these toxic species or are responsible for their toxicity have not been satisfactorily explained yet. The authors of the present paperprovide adetailed account of the chemical compounds produced in a variety of Poland's waterworks in the course of the disinfection process. Particular consideration is given to the water treatment plants of the city of Warsaw, where use is made of chlorine, ozone and chlorine dioxide as disinfectants. Presented are also the potentialities for determining the by-products in potable water.

[^0]: Dr inż. E. Zbieć, prof. dr hab. inż. J. R. Dojlido: Instytut Meteorologii i Gospodarki Wodnej, ul. Podleśna 61, 01-673 Warszawa

