Odsiarczanie gazów odlotowych w środowisku zderzających się strumieni płynów

Rozwój technologii odsiarczania gazów odlotowych, mimo wielu znanych sposobów prowadzenia procesu, trwa w dalszym ciągu, przede wszystkim w celu poprawy sprawności procesowej, dyspozycyjności i obniżenia kosztów ogólnych. Jedną z alternatywnych metod odsiarczania gazów odlotowych może być wykorzystanie zjawiska zderzenia bezpośredniego, mniej lub bardziej czołowego, strumieni oczyszczanych gazów w obecności ciekłego reagentu, mającego właściwości sorbentu dwutlenku siarki. Zderzenie czołowe strumieni, gdy napływają one na siebie wzdłuż tej samej osi, jest konfiguracją najprostszą (rys. 1).

W rezultacie zderzenia w jego najbliższej przestrzeni występuje zderzenie w strefie dużejбурzliwości, stwarzającej dobre warunki do wymiany pędu, ciepła i masy w układach jednorodnych i wielofazowych. Wynika to z następujących powodów:

- wzrostu prędkości względnej płynów, co zmniejsza opory zewnętrzne wnikania ciepła i masy,
- wzrostu średniego czasu przebywania substancji (reagentów) w niewielkiej przestrzeni oddziaływania,
- istnienia w układzie gaz-ciecz dużych sił ścianających i zderzeń cząstek, co prowadzi do zwiększenia powierzchni międzyfazowej i szybkości jej odnawiania,
- zderzeń strumieni fazy ciekłej, co powoduje dobre ich wymieszanie i wyrównanie stężeń w układzie.

Taka korzystna charakterystyka układu umożliwia potwierdzenie w wielu badaniach procesów podstawowych, jak również w zastosowaniach technicznych [1,2]. W odniesieniu do odsiarczania gazów, które jak dotąd nie było przedmiotem badań w tym układzie, istotną jest intensyfikacja wymiany masy, tj. absorpcji SO$_2$, w odpowiednim – ciekłym – sorbencie.

Zwiększenie strumienia zaabsorbowanej masy SO$_2$ wiąże się ze zmniejszeniem wydźwigniązowej właściwości układu zderzeniowego, a także z wtórnym rozpyleniem kropel i ściananiem w strefie zderzenia oraz wzrostem cyrkulacji powierzchniowej i wewnętrznej w kropelach na skutek zderzeń i deformacji. Porównanie absorbera zderzeniowego na podstawie badań absorpcji gazów dobrze i słabo rozpuszczalnych w wodzie wskazuje, że współczynniki przenikania masy w absorberach zderzeniowych są porównywalne lub wyższe niż w klasycznym absorberach natryskowych, półkowych i wypełnionych [2].

Dla identyfikacji procesowej układu [3], tj. zwiększenia jego zdolności do absorpcji SO$_2$ w roztworze alkalicznym, przeprowadzone badania doświadczalne będące przedmiotem niniejszej pracy.

Procedura badań

Schemat stanowiska do badania absorpcji SO$_2$ w skruberze zderzeniowym przedstawia rysunek 2. Jako testowy zastosowano strumień powietrza oraz powietrza otoczenia, do którego dozowano odpowiednią objętość SO$_2$, tak aby zachować w przybliżeniu stałe stężenie SO$_2$ w powietrzu, tj. około 800 ppm. Strumień ten rozdzielono na dwa oddzielne strumienie, podzielone na cztery części i wprowadzono do skruba (1) przesuwymi rurami (2) o średnicy wewnętrznej 60 mm, przez które przewożono gazy. Kąt zróżnicowanie gazu w sposób skierowany, umieszczono na tej samej osi.

Rozwiązanie to umożliwiło zmianę położenia wylotów strumienia gazu, tj. wielkości zderzenia zderzenia. Ciecz absorpcyjną, którą stanowił wodny roztwór sody kalcywnej, w stężeniu około 0,1 mol/dm3 i temperaturze otoczenia, pobierano ze zbiornika i tłoczone pod ciśnieniem do wjazdu rur (3) do szklanych kryptyk (4), zasilających dysze hydrauliczne. Dysze zapewniały rozpył w postaci pełnego stojka i umieszczone były na wylocie z rur (2) tak, że ich odległość w stosunku do krawędzi wylotów gazu z rur mogła być zmieniana, co tym samym pozwalało na zmianę wzajemnego położenia dysz. Po wypływie i zderzeniu umieszczono w przestrzeni skruba pomiędzy wylotami z rur (2), w wyniku działania sił ciężkości, nastąpiło rozdzielenie cieczy od gazu. Kropelki wyciśnięte wraz z gazem wydzielano w odkaplanowaniu w wodorydrowym (5).

Zmiennymi parametrami badań były strumienie objętościowe gazu i cieczy oraz odległości wylotów strumieni gazu i roztworu. Wśród parametrów opisujących procesy gazu, prowadzono w czasie 20-30 min, do spadku pH roztworu do 6, dla każdego punktu badanych zmiennych. Roztwór wyczerpany regenerowano sproszkowanym wodorotlenkiem wapnia. Po zdekatonowaniu i zmiękaniu sproszk...
kowanym Na₂CO₃ roztwór o pH=12 używano ponownie do badań. Efekty odsiarczania gazu, tj. szybkość absorpcji SO₂ w roztworze sody kalcynowanej i sprawność odsiarczania, określano ze wskazań automatycznego analizatora SO₂, który pobierał i analizował próbki gazu z rurociągu dołotowego i na wylocie ze skrubera, przed odkraplacząm. Prędkość liniową gazu na wylocie z rur doprowadzających gazu do strefy zde-
rzzenia (υ₀, m/s), przy znanych strumieniach objętości gazu (V₀) i powierzchni przekroju prostopadłego do przepływu (A₀), obliczono z zależności:

\[u₀ = V₀/3600 A₀ \]

Sprawność odsiarczania gazu (η) obliczano jako stosunek masy SO₂ zaabsorbowanego w czasie dt (mₐ) do masy SO₂, która w tym samym czasie została wprowadzona do skruba-
era (mᵢ):

\[η = \frac{mₐ}{mᵢ} = \frac{\int t₀ \cdot V₀ \cdot (Cᵢ - C₀) \, dt}{\int t₀ \cdot V₀ \cdot Cᵢ \, dt} \]

gdzie Cⁱ i C₀ oznaczają stężenia SO₂ (kgSO₂/m³), odpowiednio na wlocie i wylocie ze skrubera.

Szybkość absorpcji SO₂ (kgSO₂/h) obliczono z zależności:

\[R_{SO₂} = η \cdot V_{SO₂} \cdot ρ_{SO₂} \]

gdzie:

V_{SO₂} – strumień objętości SO₂ wprowadzony do skrubera, m³/h,
ρ_{SO₂} – gęstość SO₂ w warunkach badań, kg/m³.

Wyniki badań

Wyniki badań przedstawiono na wykresach obrazujących wpływ zasadniczych parametrów procesowych, operacyjnych i konstrukcyjnych na sprawność odsiarczania i szybkość absorpcji SO₂ w roztworze węglańu sody.

Sprawność odsiarczania zwiększała się wraz ze wzrostem gęstości zraszania roztworem sorpcyjnym, określonym przez stosunek L/G w zakresie 3+14 dm³/m³ (rys.3). Znaczenie miały również jednak i inne parametry, takie jak wzajemna

Fys. 2. Schemat instalacji badawczej (1 – skruber zderzeniowy, 2 – rury, doprowadzające gaz, 3 – rury z dysząmi rozpylającymi doprowadzające roztwór sody, 4 – zwódka palarnowa, 5 – odkraplacz, 6 – analizator SO₂)

Fys. 3. Zależność sprawności odsiarczania gazu od gęstości zraszania przy zmiennych odległościach dysz zraszających, o drobnym rozpyle i malej wydajności (b₁) oraz grubym rozpyle i dużej wydajności (b₂)

Fys. 4. Zależność sprawności odsiarczania gazu od odległości pomiędzy wylotami gazu przy L/G=1 i zmiennym stosunku L/G (1 – 4 dm³/m³, 2 – 6 dm³/m³, krzywa 3 odpowiada warunkowi Lᵢ = 142 mm = const i zmiennym wartościom b₂)
Jakość rozpyłu roztworu, tzn. czy były to drobne (indeks górny przy λ₀ równy 1) lub grube kropelki (indeks równy 2), przy dostatecznie dużej odległości pomiędzy dyszami, oraz gdy gęstość zraszania była odpowiednio duża, nie miała znaczącego wpływu na sprawność odsiarczania gazów.

Zwiększenie odległości pomiędzy wylotami zderzających się strumieni gazu (λ₁) powodowało wzrost sprawności odsiarczania tylko do pewnej granicy (rys.4). W warunkach badań była to odległość λ₁=150–160 mm. Dalsze zwiększenie odległości powodowało systematyczny spadek sprawności odsiarczania, co wynikało z pogorszenia warunków wnikania masy i szybkości odnawiania się powierzchni kontaktu.

Zjawisko to może być w pewnym zakresie niwelowane, jeżeli wraz ze zwiększeniem λ₁ zwiększy się jednocześnie odległość pomiędzy dyszami (λ₀) (rys.4, krzywa 3). Wydaje się jednak, że i w tym przypadku występuje również odległość optymalna λ₀, co wymaga potwierdzenia w dalszych badaniach.

Zwiększenie prędkości liniowej odsiarczanego gazu na wylotach z rurociągów do strefy zderzenia powodowało, w zależności od gęstości zraszania roztworem sorpcyjnym, różny przebieg krzywych sprawności odsiarczania (rys.5).

![Rys. 5. Zależność sprawności odsiarczania od prędkości liniowej zderzających się strumieni gazu, przy różnych gęstościach zraszania ciężką i stałych odległościach wylotów λ₁=λ₀
(1 - 0,42 m/s², 2 - 0,50 m/s², 3 - 0,80 m/s², 4 - 1,00 m/s²)](image)

W zakresie małych gęstości zraszania sprawność odsiarczania miała wraz ze zwiększeniem prędkości gazu, co świadczyło, że mimo polepszenia warunków kinetycznych wnikania SO₂ do kropel i stałych przyrostów w strefie zderzenia, pozostałe warunki były niekorzystne. Krótki czas kontaktu reagujących faz i kropel w dużym stopniu ulegają koalescencji zmniejszają czynną powierzchnię przenikania masy. Potwierdziły to przebiegi krzywych sprawności w zakresie większych gęstości zraszania, gdzie sprawność odsiarczania w badanym przedziale zmian prędkości gazu zmieniały się nieznacznie. Przebieg zmian szybkości absorpcji SO₂ w roztworze sody w skruberze zderzeniowym, w zależności od prędkości liniowej zderzających się strumieni gazu, przy różnych odległościach wylotów λ₁ na rysunku 6.

Szybkość absorpcji SO₂ zwiększała się wraz ze wzrostem prędkości, a tym samym energii zderzenia strumieni gazu, oraz wraz ze wzrostem odległości wylotów rur wylotowych, tzn. przestrzeni zderzenia. Dalszy wzrost odległości λ₁ poza granicę 200 mm, podobnie jak w przypadku sprawności odsiarczania, powodował również spadek szybkości absorpcji SO₂.

![Rys. 6. Zależność szybkości absorpcji SO₂ od prędkości zderzania się strumieni gazu przy różnych odległościach wylotów λ₁=λ₀
(1 – 82 mm, 2 – 142 mm)](image)

Uzyskana w badaniach szybkość absorpcji SO₂ w zakresie 0,12–0,25 kgSO₂/h była porównywalna bądź wyższa niż w najbardziej sprawnych skruberach natryskowych. Świadczyło to o równowodności wymiennik przenikania masy odniesiony do fazy gazowej, który w mniejszych badaniach wynosił K_G=0,35+10 s⁻¹. Wysokie wartości tego współczynnika wynikały z dużej prędkości względnej kropel roztworu sorpcyjnego i gazu, która może tu dochodzić do podwójnej prędkości gazu. Szybkość przenoszenia masy była natomiast proporcjonalna do wykładnika prędkości względnej, co miało istotne znaczenie dla absorpcji gazów dobrze i średnio rozpuszczalnych.

Wnioski

- Sprawność odsiarczania gazu wzrastała wraz ze wzrostem gęstości zraszania określonej stosunkiem L/G i pozostawała wysoka, w małym stopniu zależna od prędkości gazu w zakresie 5,5–10,5 m/s, gdy gęstość zraszania ciężką była dostateczna.
- Istnieje optymalna odległość pomiędzy wylotami zderzającymi się strumieni gazu, a także pomiędzy dyszami rozbijającymi ciecz, z tym, że obserwowano wzrost sprawności odsiarczania gazów wraz ze zwiększeniem odległości dysz, w badanym zakresie zmian ich położenia.
- Początkowa średnica rozpylanych kropel nie miała znaczącego wpływu na sprawność odsiarczania gazów, jeżeli gęstość zraszania ciężką była dostatecznie duża.

Literatura

SO_2 Removal in a Space with Impinging Fluid Streams

The idea of impinging streams was included in the process of flue gas desulphurization: SO_2 was removed during axial impingement of two fluid streams. Experiments showed that the efficiency of SO_2 removal depended primarily on the linear velocity of the gas stream to be treated, on the spraying density, and on the location of impingement. The investigated absorber involving two impinging streams was found to be very effective. The device is an attractive option to conventional absorbes of low or medium capacity.