January Bień, Longina Stępniak, Jolanta Palutkiewicz

Skuteczność dezynfekcji wody w polu ultradźwiękowym

Dezynfekcję wody można prowadzić zarówno srodkami chemicznymi jak i metodami fizycznymi, do których należy stosowanie pola ultradźwiẹkowego. Doświadczenia światowe wskazują, że sposobem na rozwiązanie wiẹkszości problemów dezynfekcji wody jest stosowanie intensywnych metod utleniania we wspólpracy z innymi metodami lub procesami. Zatem należy uznać za celowe określenie efektywności ultradźwięków jako czynnika dezynfekującego, w połączeniu ze środkami chemicznymi, takimi jak ozon czy związki chloru. Połaczenie to może zapewnić pełną dezynfekcjé, tzn. zmniejszyć liczebność bakterii do wartości określonej w przepisach sanitarnych oraz jednocześnie zapobiec wtórnemu skażeniu wody. Wyniki dotychezasowych badań z tej dziedziny są ogólne i w sposób jednoznaczny nie pozwalają określić skuteczności tej metody dezynfekcji [1]. Konieczne wydaje się więc prowadzenie badań w tym kierunku, w celu ustalenia warunków prawidłowej dezynfekcji wody za pomocą pola ultradźwiękowego, jak również metodami skojarzonymi.

O skuteczności dezynfekcji wody w polu ultradźwiękowym decyduje natężenie pola ultradźwiękowego oraz czas jego oddziaływania. Natęzenie pola ultradźwiękowego określa zależność:

$$
\begin{equation*}
\mathrm{I}=0,5 \zeta \mathrm{c}(\mathrm{~A} \omega)^{2} \tag{1}
\end{equation*}
$$

gdzie:
I - natężenie pola ultradźwiękowego, $\mathrm{W} / \mathrm{cm}^{2}$,
ζ - gęstość wody, g/cm ${ }^{3}$,
c - prędkość fali, cm / s.
A - amplituda drgań, m,
ω - częstość kołowa ($\omega=2 \pi \mathrm{f}$),
f - częstotliwość, kHz ,
Istotą bakteriobójczego działania pola ultradźwiękowego jest zjawisko kawitacji, pojawiające się dopiero po przekroczeniu tzw. natężenia progowego. Dla wody wartosć natężenia progowego zawiera się w granicach $1,0 \div 2,0 \mathrm{~W} / \mathrm{cm}^{2}$ [2]. Wzmocnienie efektu bakteriobójczego można uzyskać stosując większą amplitudę lub częstotliwość drgań pola ultradźwiękowego, jak również przedlużając czas jego oddziaływania.

Metodyka badań

Do badań została wytypowana płytka woda gruntowa zasilająca jedno z częstochowskich ujęć. Próby wody charakteryzowały się dużym zróżnicowaniem składu bakteriologicznego, przy czym stwierdzono znaczne przekroczenia dopuszczalnej liczby bakterii. Jednocześnie analiza właściwości fizyczno-chemicznych badanej

[^0]wody wykazała, że wskaźniki te byly niższe od wartości dopuszczalnych dla wody do picia [3].

Pole ultradźwiękowe, jak wynika z dotychczasowych badań [4,5], nie wywołuje negatywnych zmian natury fizyczno-chemicznej w wodzie, a nawet może przyczyniać się do ich poprawy. Jakość i charakter tych zmian będzie przedmiotem już rozpoczętych badań w tym kierunku.

Zasadniczym celem prezentowanych badań było określenie wpływu pola ultradźwiękowego na wymagane przepisami sanitarnymi bakteriologiczne wskaźniki jakości wody dezynfekowanej. W badaniach skoncentrowano się na ocenie efektu dezynfekcji, jako podstawowego kryterium oceny skuteczności stosowanych metod. Efekt ten określano na podstawie analizy sanitarnej wody przed dezynfekcją i po jej zakończeniu.

Ocena sanitarna badanej wody polegała na określeniu liczby bakterii grupy coli w $100 \mathrm{~cm}^{3}$ wody oraz na ustaleniu liczby bakterii mezofilnych i psychrofilnych w $1 \mathrm{~cm}^{3}$ próby wody. Skuteczność dezynfekcji wody określano z zależności:

$$
\begin{equation*}
\varepsilon=\left(1-\mathrm{N} / \mathrm{N}_{\mathrm{o}}\right) 100 \% \tag{2}
\end{equation*}
$$

gdzie:
N - liczba bakterii po dezynfekcji,
N_{o} - liczba bakterii przed dezynfekcja.
Nadźwiękawianie prób wody prowadzono przy zastosowaniu dezintegratora ultradźwiękowego UDM-10 produkcji polskiej o nastepujacych parametrach:

- amplituda drgań $\mathrm{A}=0 \div 40 \mu \mathrm{~m}$,
- stała czẹstotliwość $\mathrm{f}=21 \mathrm{kHz}$,
- moc wyjściowa generatora $\mathrm{P}=1,5 \mathrm{~kW}$.

Proces nadźwiękawiania wody odbywał się w układzie nieprzeplywowym, po jednokrotnym napełnieniu naczynia roboczego o pojemnósci $0,5 \mathrm{dm}^{3}$.

Dyskusja wyników

Przedstawione poniżej wyniki badań dotyczą dzialania pola ultradźwiękowego w procesie dezynfekcji wody naturalnej, w układzie samodzielnym, jak i w układach skojarzonych z reagentami chemicznymi (dwutlenek chloru i ozon). Wyniki wstępnych badań prowadzonych dla wody sztucznie preparowanej, dotyczących możliwości stosowania ultradźwięków w procesie dezynfekcji wykazały, że przy amplitudzie drgań wynoszącej $20 \mu \mathrm{~m}$ wystąpił największy wzrost skuteczności w stosunku do mocy akustycznej dostarczonej do układu [6]. Największa skuteczność uzyskano natomiast dla amplitudy wynoszącej $40 \mu \mathrm{~m}$. Biorac to pod uwage, w badaniach prowadzonych w warunkach wody naturalnej, zastosowano wytypowane wcześniej wielkości amplitudy drgań, tj. 20 i $40 \mu \mathrm{~m}$. Natężènie pola ultradźwiękowego
przekracza wówczas wartość progowa związana z występowaniem kawitacji.

Początkowe badania zmierzały do ustalenia wpływu czasu nadźwiękawiania na skuteczność dezynfekcji wody tą metodạ. W celu dezynfekcji wody stosowano następujace czasy ekspozycji w polu ultradźwiękowym: 1, 10, 20 i 30 min . Otrzymane rezultaty potwierdzily wzrost efektu dezynfekcji wody naturalnej w miarę wydłużania czasu nadźwiękawiania prób. Jednocześnie stwierdzono, że czas skuteczny, z punktu widzenia wymagań procesu dezynfekcji, przekracza 30 min , chociaż wystapiło wtedy znaczne zmniejszenie liczebności bakterii (tab.1). Wyniki te są reprezentatywne dla szeregu badań prowadzonych dla prób o różnym stopniu skażenia bakteriologicznego, dla których czas ten nie był również wystarczajacy.

Tabela 1. Wyniki analizy bakteriologicznej wody w zależności od czasu nadžwiękawiania ($\mathrm{A}=20 \mu \mathrm{~m}, \mathrm{f}=21 \mathrm{kHz}$)

Czas dezynfekcji \min	Liczba bakterii		
	grupy coli $w 100 \mathrm{~cm}^{3}$ $\left(N_{0}=60, N_{s}=0\right)$	mezofilnych $w 1 \mathrm{~cm}^{3}$ $\left(N_{0}=43, N_{5}=10\right)$	psychrofilnych $w 1 \mathrm{~cm}^{3}$ $\left(N_{0}=567, N_{s}=50\right)$
1	60	38	537
10	30	33	515
20	16	15	340
30	6	20	350

N_{5} - dopuszczalna liczba bakterii w wodzie dezynfekowanej
Wzrost skuteczności dezynfekcji w badanym przedziale czasu (rys.1) wynosił od 0 do 90% dla wskaźnika coli, od 12 do 65% dla bakterii mezofilnychiod 5 do 40% dla bakterii psychrofilnych. Wpływ czasu nadźwiękawiania na skuteczność dezynfekcji wody był największy w przypadku bakterii grupy coli.

Rys. 1. Wpływ czasu nadżwiękawiania na skuteczność dezynfekcji wody ($\mathrm{A}=20 \mu \mathrm{~m}$)

Proces niszczenia mikroorganizmów przebiegałzatem odmiennie, zależnie od badanej grupy bakterii. Zależność tę potwierdzaja relacje przedstawione na rysunku 2, obrazujacym zmniejszenie liczby bakterii w próbach wody o różnym stopniu skażenia, poddanych działaniu pola ultradźwiękowego w czasie 15 minut, nieskutecznym dla pełnej dezynfekcji wody. Najwyższa skuteczność dezynfekcji wystapiła w grupie bakterii coli, mniejsza w grupie bakterii mezofilnych i najmniejsza dla psychrofilnych. Z reguły efekt ten był lepszy w próbach wody o większej liczebności bakterii przed dezynfekcja.

Rys. 2. Efektywność dezynfekcji wody naturalnej w polu ultradżwiękowym
Zaobserwowane zależności wydają się być zrozumiałe, biorąc pod uwagę fakt, że bakterie grupy coli nie przetrwalnikuja, zatem są mniej odporne na czynniki dezynfekcyjne. W przypadku zastosowanego czynnika o charakterze fizycznym znalazło to również swój wyraz. Rozpatrując wpływ ultradźwięków na bakterie wytwarzajace przetrwalniki i wchodzące w skład bakterii psychrofilnych i mezofilnych, można mówić o podwyższonej ich odporności. Dokładne określenie tych relacji wymaga dalszych badań, dotyczących np. bakterii Clostridium perfringens, będących dodatkowym wskaźnikiem zanieczyszczenia wody.
Zuwagi na zbyt długie czasy ekspozycji wymagane w procesie dezynfekcji z udziałem samego pola ultradźwiękowego, jak również ze względu na brak możliwości zrezygnowania z tradycyjnie stosowanych środków chemicznych, jako zabezpieczenia wody przed wtórnym skażeniem wody, przeprowadzono badania nad skojarzonym działaniem ultradźwięków z reagentami chemicznymi. W trakcie badań próby wody poddawano dezynfekcji za pomoca dwutlenku chloru, ozonu oraz metod skojarzonych w układzie: ultradźwięki + dwutlenek chloru (UD+C1O2) i ultradźwięki + ozon (UD+O3). Dawki środków chemicznych stanowily połowę ich zapotrzebowania określonego dla każdej próby wody poddawanej dezynfekcji.

Czas nadźwiękawiania w tej części badań wynosił 15 minut, natomiast zastosowane amplitudy drgań wynosiły 20 i $40 \mu \mathrm{~m}$. Ekspozycja prób w czasie krótszym od przyjętego nie pozwoliła na uzyskanie pozytywnego rezultatu z punktu widzenia procesu dezynfekcji, niemniej jednak wystappił niewielki wzrost skuteczności przyjętej dawki chemicznej.

Rys. 3. Efektywnosć dezynfekcji wody naturalnej metodami skojarzonymi ($\mathrm{A}=20 \mu \mathrm{~m}$)
Wyniki analizy sanitarnej prób wody o zróżnicowanym stopniu skażenia bakteriologicznego, poddanej dezynfekcji badanymi metodami, przedstawiono na rysunkach 3 i 4.

Efekt dezynfekcji uzyskany przy zastosowaniu pola ultradźwiękowego o amplitudzie drgań $\mathrm{A}=20 \mu \mathrm{~m}$ tylko w jednym przypadku był wystarczajacy w stosunku do wymagań sanitarnych. O takim rezultacie zadecydował wskaźnik coli, który w pozostałych próbach przekraczał wartość dopuszczalną. We wszystkich próbach odnotowano jednak lepszy efekt działania metod skojarzonych, w stosunku do otrzymanego metodami chemicznymi, przy zmniejszonej dawce. Oddziaływanie pola ultradźwiękowego, o maksymalnym natężeniu określonym amplitudạ $\mathrm{A}=40 \mu \mathrm{~m}$, przyniosło korzystniejsze rezultaty końcowe. W przypadku jednej próby pozytywny efekt wystapił przy zastosowaniu metody UD $+\mathrm{ClO}_{2}$ oraz w trzech przypadkach w układzie UD $+\mathrm{O}_{3}$.

	$A=40 \mu \mathrm{~m}$
	- - degynfekcja polem UD …- - derynfekcja ClO_{1} \qquad - dezynfeircja O_{3} \qquad - derynfelicfa polem UD $+\mathrm{ClO}_{2}$ \qquad derynfekcia palem UD $+\mathrm{O}_{3}$

Rys. 4. Elektywnose dezynfekcji wody naturalnej metodami skojarzonymi ($A=40 \mu \mathrm{~m}$)

Analizując wpływ ultradźwięków na wzrost efektywności reagentów chemicznych poddano ocenie średni wzrost skuteczności dezynfekcji wody w metodach skojarzonych (tab.2).

Przy współdziałaniu ultradźwięków z dwutlenkiem chloru przyrost ten wynosił dla badanych wskaźników od 10,0 do $14,4 \%$, dla $\mathrm{A}=20 \mu \mathrm{~m}$, oraz od 16,0 do $27,8 \%$, dla $A=40 \mu \mathrm{~m}$. Korzystniejszym rozwiązaniem okazała się metoda skojarzona - ultradźwięki + ozon, przy której uzyskano podwyższenie skuteczności dezynfekcji o $13,0 \div 21,0 \%$ dla $A=20 \mu \mathrm{~m}$ oraz o $21,4 \div 25,0 \%$ dla $\mathrm{A}=40 \mu \mathrm{~m}$. Wzrost zaobserwowanego efektu dezynfekcji z racji podwyższenia natẹżenia pola ultradźwiękowego był największy w przypadku bakterii grupy coli, co ma szczególne znaczenie, gdyż wielkość tego wskaźnika decyduje o rezultacie końcowym procesu dezynfekcji.

Tabela 2. Średni przyrost skutecznosci dezynfekcji wody naturalnej przy zastosowaniu metod skojarzonych ($\Delta \varepsilon_{\text {str }}$, \%)

Wskaznik	Amplituda $\mu \mathrm{m}$	Metoda			
		$\mathrm{UD}+\mathrm{ClO}_{2}$		$\mathrm{UD}+\mathrm{O}_{3}$	
		względem ClO_{2}	przy zmianie amplitudy z $20 \mu \mathrm{~m}$ na $40 \mu \mathrm{~m}$	względem O_{3}	przy zmianie amplitudy z $20 \mu \mathrm{~m}$ na $40 \mu \mathrm{~m}$
liczba bakterii z grupy coll $w 100 \mathrm{~cm}^{3}$	20	10,0	17,8	13,8	11,2
	40	27,8		25,0	
liczba bakterii mezofilnych w $1 \mathrm{~cm}^{3}$	20	14,4	8,8	21,0	3,0
	40	23,2		24,0	
liczba bakterii psychrofilnych $w 1 \mathrm{~cm}^{3}$	20	14,2	1,8	13,0	8,4
	40	16,0		21,4	

Podsumowanie

Podsumowujac przedstawione wyniki badań należy pozytywnie ocenić dzialanie pola ultradźwiẹkowego w procesie dezynfekcji wody. Zasadniczym kierunkiem w zastosowaniu tej niekonwencjonalnej metody dezynfekcji powinny być rozwiązania o charakterze skojarzonym. Biorac pod uwage teoretyczne podstawy zjawisk ultradźwiękowych, określone w badaniach efekty skojarzonego działania ultradźwięków i ozonu oraz dwutlenku chloru rozumieć należy jako wypadkowy rezultat wielokierunkowych zmian właściwości ośrodka bakteryjnego. Mogą one zachodzić pod wplywem związków chemicznych i ultradźwięków, a jednocześnie występować jako efekt zmian aktywności tych związków w nadźwiękawianym ośrodku. Spotęgowane działanie reagentów chemicznych możliwe jest dzięki uszkodzeniom błony i ściany komórkowej bakterii, wywołanym falą udarowa emitowaną w nastẹpstwie zjawiska kawitacji. Powoduje to prawdopodobnie lepsze, łatwiejsze wnikanie środków chemicznych i ich reakcję wewnątrz komórki bakteryjnej.

Interpretacja przedstawionych efektów powinna uwzględniać również znaczenie reakcji sonochemicznych, a przede wszystkim dodatkowego działania produktów toksycznych powstalych wich wyniku, $\mathrm{np} . \mathrm{H}_{2} \mathrm{O}_{2}$. Szczegółowe wyjaśnienie udziału tych czynników w efekcie, który zaobserwowano w wykonanych badaniach, wymaga wielokierunkowych analiz fizyczno-chemicznych oraz obserwacji mikroskopowych bakterii, jako głównych obiektów procesu dezynfekcji.

Wnioski

- Wykazano, że pole ultradźwiękowe oddziałuje na bakterie przyjette jako wskaźniki w kontroli sanitarnej procesu dezynfekcji. Skuteczność tego oddziaływania jest zróżnicowana w zależności od badanej grupy bakterii oraz ich liczebności.
- Wydłużenie czasu dezintegracji mikroorganizmów polem ultradźwiękowym powoduje znaczny wzrost skuteczności działania tej metody dezynfekcji.
- Wskaźnik coli okazal się najbardziej przydatny do oceny skuteczności dezynfekcji wody metodami stosowanymi w badaniach.
- Wstępne stosowanie pola ultradźwiękowego w metodach skojarzonych intensyfikuje działanie środków chemicznych. Stosowanie pola ultradźwiękowego łącznie z ozonem lub dwutlenkiem chloru pozwala na ograniczenie czasu nadźwiękawiania jak również na zmniejszenie dawek reagentów chemicznych, w porównaniu z procesami samodzielnymi.

LITERATURA

1. B. JASIŃSKI: Chlor, ozon, ultradźwięki i promieniowanie nadfioletowe jako alternatywne metody dezynfekcji wody. Gaz, Woda i Technika Sanitarna, 1978, nr 5.
2. I.E. ELPINER: Ultradźwięki, działanie fizyko-chemiczne i biologiczne. PWN, Warszawa 1968.
3. Rozporządzenie Ministra Zdrowia i Opieki Społecznej w sprawie warunków, jakim powinna odpow iadać woda do picia i na potrzeby gospodarcze. Dz.U. nr 35 z 4 maja 1990 r., poz. 205, zał. 1 i 2.
4. M. KATO: The further development in ozone application technology in potable water, ultra-violet or ultra-sonic asisted ozonation. Water Supply, Vol. 6, Nice, 1986.
5. E. DAHI: Physicochemical aspects of disinfection of water by means of ultrasound and ozone. Water Research, Vol. 10, Pergamon Press 1976.
6. J. BIEŃ, L. STEPNIAK: Badanie skuteczności dezynfekcji wody polem ultradźwiękowym. Mat. konf., Częstochowa 1994.

Efficiency of Water Disinfection in Ultrasound Field

The ultrasound-field method is one of the non-conventional approaches to water disinfection. However, the results obtained so far have been insufficient to enable a reliable assessment of effectiveness. The disinfection effect depends strongly on the appropriate choice of the following sound process parameters - running time and ultrasound field intensity. In the present study the adopted criterion for assessing the efficiency of the
ultrasound-field method was the disinfection effect observed with respect to three bacterial groups - coli titre, mesophilic bacteria and psychrophilic bacteria. The efficiency of the ultrasound field was tested by extending the running time and varying the field strength. In the study use was also made of a combination of ultrasounds and disinfecting methods (ultrasounds $+O_{3}$ or ultrasounds $+\mathrm{ClO}_{2}$), which was found to be promising.

[^0]: Dr hab.inż. J.Bień, prof.nadzw., dr inż.L.Stẹpniak, mgr inż. J.Palutkiewicz: Politechnika Częstochowska, Instytut Inżynierii Środowiska, ul. H.Dą browskiego 69, 42-200 Częstochowa

