January Bień
 Łucja Fukas-Pionka
 Urszula Szymura
 Krzysztof Szymański

NAPREŻENIA W RUROCIAGACH KANALIZACYJNYCH NA TERENACH INTENSYWNEJ EKSPLOATACJI GÓRNICZEJ

Budowa rurociagów kanalizacyjnych w warunhach destrukcyjnego działania przesuwajacego się terenu wymaga specjalnej techniki zapobiegającej awariom sieci. Gfównymi zagrożcniami przewodów kanalizacyjnych w warunkach intensywnej eksploa:acji górniczej są zagrożenia konstrukcji sieci oraz warunków hydraulicznych.

Z punktu widzenia racjonalnego projektowania sieci kanalizacyjnych, podlegajacych wolywom eksploatacji górniczej, niezbędna jest znajomość rozkładu naprężen, przekazywanych na zewnętrzną powierzchnię obicktu przez odkształcający się poziomo grunt. Naprężenia styczne, występujące w paczczyźnie styku obiektu z gruntem, są do pewnej granicy pazemieszczenia gruntu względem obiektu liniowo zależne od przemieszczenia, a powyzej przyjmują stałą wartość graniczną. Wartośc granczna odpowiada wytrzymałości gruntu na ścinanie i pozwala na określenie układu naprężeń i współpracy gruntu z kanałem. Ze względu na zróżnicowane i specyficzne podejście projektowe i konstrukcyjne do podziemnych rurociągów na terenach górniczych, z punktu widzenia analizy statyczno-wytrzymałościowej i kinetycznej wyróżnić można trzy podstawowe typy rurociągów [1]:

- rurociagi dylatowane, składajace siẹ z krótkich segmentów,
- rurociągi składajace się z dłuższych odcinków międzydylatacyjnych,
- rurociągi ciągłe.

Sieci kanalizacyjne układane są głównie z krótkich rur kamionkowych, betonowych, żelbetowych, żeliwnych itp. Przewody te łączone sa przede wszystkim za pomoca połączeń kielichowych, dwukielichowych albo połaczenen nasuwkowych. Stosowanie rurociagoów dylatowanych jest jak dotychezas podstawowym sposobem zabezpieczania sieci kanalizacyjnej przed wpływami górniczej deformacji terenu. W przypadku krótkich segmentów rurociagu zakłada się, że bezwzględne przemieszczenia odcinków rur sa równe poziomym przemieszczeniom gruntu.

[^0]
Rodzaje naprężeń w rurociqgach

Przy omawianiu zagadnień związanych z rurociagami ukiadanymi na terenach szkód górniczych, dokonuje się sprawdzenia wytrzymałości przewodów na dodatkowo pojawiające siç sily, sciśle związane z wpływami górniczymi. Dominujacy wplyw w tego typu rurociagach ma siła osiowa, powstająca w wyniku przekazywania narrężen stycznych na pobocznicę rury od rozluźniającego się lub zagęszczającego gruatu.
Srednią wartośc naprężeń normalnych (na podstawie rozkładu parcia gruntu na rurociag) można okreźlić według wzoru [1, 2]:

$$
\begin{equation*}
\sigma_{\mathrm{sr}}=\frac{\sigma_{1}+2 \cdot \sigma_{3}+\sigma_{2}}{4} \tag{i}
\end{equation*}
$$

Narrézenia slyczne, przy których wystąpi ścięcie gruntu względem pobocznicy rury, określają zależności:

$$
\begin{gather*}
\tau_{\text {gran }}=\sigma_{\mathrm{sr}} \cdot \operatorname{tg} \varsigma^{\prime}(\text { dla gruntów sypkich }) \tag{2}\\
\tau_{\mathrm{gra}}=\sigma_{\mathrm{sr}} \cdot \operatorname{tg} \cdot+\mathrm{C}(\text { dla gruntów spoistych }) \tag{3}
\end{gather*}
$$ gdzie:

$$
\begin{align*}
& \sigma_{1}=\gamma_{0} \cdot \mathrm{~h} \tag{4}\\
& \sigma_{2}=\gamma_{0} \cdot\left(\mathrm{~h}+\mathrm{D}_{\mathrm{z}}\right) \tag{5}\\
& \qquad \sigma_{3}=\gamma_{0} \cdot\left(\mathrm{~h}+-\frac{\mathrm{D}_{\mathrm{z}}}{2}\right) \cdot \xi \tag{6}
\end{align*}
$$

- - kąt tarcia wewnẹtrznego

C- kohezja
h - wysokośc warstwy gruntu przykrywającej rurociag
$\%$ - objętościowy ciężar gruntu

- - współczynnik bocznego parcia gruntu,
$\xi=\frac{\nu}{1-\nu}$
ν-- współczynnik Poissona.
Wprowadzając wzory (4), (5) i (6) do wzoru (1) otrzymujemy:

$$
\begin{gather*}
\sigma_{\mathrm{sr}}=\frac{1}{4} \cdot\left[\gamma_{0} h+2 \cdot \gamma_{0}\left(h+\frac{D_{z}}{2}\right) \cdot \xi+\gamma_{0}\left(h+D_{z}\right)\right] \\
=\frac{1}{4} \cdot \gamma_{0} \cdot(1+\xi) \cdot\left(2 h+D_{z}\right) \tag{7}
\end{gather*}
$$

Zgodnie z przedstawioną formułą, na wzrost naprezzeń maja wpływ: ciężar objętościowy grun y i jego właściwości oraz glębokość posadow enia kanału. W tabeli 1 przedstawiono charakterystyczne parametry najczęsciej spotykanroh rodzajów gruntu.

Z analizy wzoru (7) wynika, że dla zmniejszenia wartości naprężeń normalnych i sịycznych, należy układać kanały możliwie płytko, co równocześnie umożliwi szybkie i tanie usuwanie ewentualnych awarii. Wzór ten nie uwzględnia obciążeń dynamicznych, w przypadku lokalizacji sieci w pasmach ulic. W związku z powyższym przy projekiowaniu sieci kanalizacyjnych, dla zmniejszenia wartości naprężeń należy dążyć do ukiadania rurociagów poza pasmam jezdn:. Analiza parametrów charakterystyczaych dla danego rodzaju gruntu (tab. i) pozwala stwierdzic, że niesprzyjajacymi (ze względów wytrzymałościowych) są dla budowy kanalów równié̇ tereny z gruntami spoistymi oraz gruntami o dużej wytrzymałości (grunty skaliste, gruboziarniste, gliny zwarte).

Tabela 1
WARTOŚCI WSPÓLCZYNNIKOW: POISSONA (p) I BOCZNEGO PARCIA GRUNTU (ζ)

Rodzaj gruntu	ν	ζ
Gliny i iły	0,20	0,250
Piaski zageszczone	0,25	0,333
Piaski lużne i gliniaste	0,30	0,428
Gliny piaszezyste i twardoplastyczne	$0,30-0,35$	$0,425-0,539$
Hy twardoplastyczne	0,40	0,667
Grunt nieściśliwy	0,50	1,0

W innych opracowaniach [3-5] stwierdzono, że stopien zagrożenia rurociągu na terenach podlegających eksploatacji górniczej określa się za pomoca $R_{\min }$ (najmniejszy promien krzywizny terenu) i $\varepsilon_{\max }$ (maksymalne odkształcenie poziome). Naprężenia panujące w zginanym rurociągu, wywołane zmianą krzywizny terenu, obliczyć można przyjmując uproszczone równanie w postaci:

$$
\sigma=\frac{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{D}_{\mathrm{z}}}{2 \cdot \mathrm{R}}, \mathrm{MN} / \mathrm{m}^{2}
$$

gdzie:
E_{s} _ moduł sprężystości materiału rury (dla stali $\mathrm{E}_{\mathrm{s}}=2,1 \cdot 10^{5} \mathrm{MN} / \mathrm{m}^{2}$)

LITERATURA

1. Praca zbiorowa: Budowa i eksploatacja sieci uzbrojenia podziemnego na terenach górniczych. OBR „Energopol" (maszynopis), Gliwice, 1982.
2. Praca zbiorowa: Systematyka konstrukcji i budowli sieci wod.-kan. w aspekcie ich odporności na wplywy górnicze. OBR „Energopol" (maszynopis), Gliwice, 1983.
3. F. WASIKOWSKI: Wytyczne do projektowania rurociagów stalowych na terenach górniczych.
D_{z} - średnica zewnętrzna rury, cm
R - najmniejszy promień krzywizny terenu, km
Naprężenia w rurze pochodzace od sily podłużnej tarcia, spowodowanej przyczepnością odkształcającego się gruntu do ścian zewnętrznych rury, określa formuła:

$$
\begin{equation*}
\sigma=\frac{\mathrm{T}_{ \pm} \cdot \mathrm{L}}{2 \cdot \mathrm{~S} \cdot \mathrm{~m}}, \mathrm{MN} / \mathrm{m}^{2} \tag{9}
\end{equation*}
$$

gdzie:
T_{t} - siła tarcia gruntu o powierzchnię zewnętrzna rury (w warunkach GOP przyjmuje się $T_{t}=25000 \mathrm{~N} / \mathrm{m}^{2}$)
L - odstęp elementów wyrównujących wydłużenie lub skrócenie rurociagu (kompensator, kielich, itp.), m
s-grubość ścianki rury, m
m - współczynnik jednorodności materiału ($\mathrm{m}=0,85$).
Wzór (9) nie uwzględnia wplywu głębokości ułożenia rurociągu. Przyjmuje się, że poniżej $1,50 \mathrm{~m}$ wpływ ten praktycznie ustaje. Powyższe założenie w konteście wyników opracowania [2] wydaje się dyskusyjne.
Zgodnie z równaniem (8) można stwierdzić, ze zmiana naprężeń wynikających ze zmiany promienia krzywizny terenu na skutek eksploatacji górniczej, dla przewodu lokalizowanego w podobnych warunkach, w zależności od kategorii terenu, kształtuje się następująco:

$$
\begin{equation*}
\frac{\sigma_{\mathrm{x}}}{\sigma_{\mathrm{I}}}=\frac{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{D}}{2 \cdot \mathrm{R}_{\mathrm{x}}} \cdot \frac{2 \cdot \mathrm{R}_{\mathrm{I}}}{\mathrm{E}_{\mathrm{S}} \cdot \mathrm{D}}=\frac{\mathrm{R}_{\mathrm{I}}}{\mathrm{R}_{\mathrm{x}}} \tag{10}
\end{equation*}
$$

Z przedstawionego wzoru (10) wynika, że współczynnik zmian wartości naprężeń jest odwrotnie proporcjonalny do zmian promienia krzywizny na skutek eksploatacji górniczej, Wartości liczbowe zmian wielkości naprężen sugerują unikanie lokalizacji kanałów na terenach o intensywnej eksploatacji górniczej.
4. M. CHUDEK: Projektowanie rurociagów lokalizowanych w terenje objetym wplywami eksploatacji górniczej. Biuletyn BPPW Projekty - Problemy, 1968, 5.
5. J. BIEN, K. FUKAS-PEONKA, U. SZYMURA, K. SZYMAŃSKI: Wybrane aspekty projektowania sieci kanalizacyjnej na terenach czynnej eksploatacji górniczej. Ochrona Srodowiska, Wyd. PZITS nr 434/3-4(20-21), Wrocław 1984.
6. Praca zbiorowa: Ochrona powierzchni przed szkodami górniczymi (cz. 1), Śląsk, 1980.

J. Bieñ, Ł. Fukas-Płonka, U. Szymura, K. Szymański
 STRESSES ACTING IN SEWER SYSTEMS OPERATED IN EXCAVATION AREAS

The effect of excavations on the distribution of stre-sses which occur in the pipes due to soil deformution is analyzed. The data obtained show that the
pipe system predominantly experiences two kinds of stresses - those originating from soil configuration changes, and tangential stresses produced by loosening or consolidation of soil. Stress variation in the pipes is inversely proportional to the variation in the radius of curvature. Analysis of the factors affeciing the pipe strength under mining conditions substantiates the need of a careful design and a reliable construction of new sewer systems.

[^0]: Dr inż. J. Bień, dr inż. L. Fukas-Pionka, mgr inż. U. Szymura, mgr inż. K. Szymanski: Instytut Inżynierii i Technologii Wody, Scieków i Odpadow Politechniki Slạskiej, uh Powstańców Warszawy 10, 41-100 Gliwice

