Marek Roman
 Halina Kłoss-Trębaczkiewicz

BADANIA NAD EFEKTYWNOŠCIĄ FILTROW PIASKOWYCH I ANTRACYTOWO-PIASKOWYCH

Cel i metodyka badań

Celem badań było porównanie efektywnosici działania filtrów jednowarstwowych piaskowych i filtrów dwuwarstwowych antracytowopiaskowych, które obejmowały jakość filtratu, przyrost strat ciśnienia i długość cyklu filtracyjnego [1]. Jako materiał filtracyjny dla złoża piaskowego w filtrze jednowarstwowym i dla warstwy piaskowej w filtrze dwuwarstwowym zastosowano piasek kwarcowy z Tomaszowskich Kopalń Surowców Mineralnych w Białej Górze. Warstwa antracytowa w filtrze dwuwarstwowym została wykonana z antracytu AK importowanego z Zagłębia Donieckiego, gdyż polski antracyt z kopalń wałbrzyskich nie spełnia wymaganych warunków pod względem właściwości fizyczno-mechanicznych (tab. 1).

Tabela 1
ZESTAWIENIE WYNIKOW BADAN WLASCIWOSCI FIZYCZNYCH I MECHANICZNYCH MATERIALOW FILTRACYJNYCH

Oznaczenie (próba średnia)	Material filtracyjny		
	antracyt polski	antracyt AK	piasek
gestość wlaściwa	1,266*	1,666*	2,6316*
[g/cm ${ }^{\text {d }}$]	1,432**	1,682**	-
gęstość nasypowa [$\left.\mathrm{g} / \mathrm{cm}^{\mathrm{s}}\right]$	0,890	1,094	-
porowatość w stanie powietrzno-suchym \%	60,0	53,0	40
test na rozkruszanie [$\%$ ¢]	0.9	0,24	-
test na scieranie [$\%$]	0,85	0,13	-

*) metodyka dla materialów nieporowatych
**) metodyka dla materiatów porowatych

Uziarnienie badanych złóż filtracyjnych dobrano według wytycznych normatywu radziecliego oraz dotychczasowych polskich doświadczeń [2, 3]. Charakterystykę złóż podano w tab. 2.
Wode do badań o wysokiej barwie ujmowano z Narwii. Proces filtracji poprzedzała koagulacja prowadzona w modelowym urządzeniu typu pulsator. Do procesu filtracji zastosowano dwie kolumny filtracyjne o srednicy 300 mm, z których jedną wypełniono złożem dwu-

Prof. dr inż. M. Roman, dr inż. H. Kłoss-Trębaczkiewicz, Instytut Zaopatrzenia w Wode i Budownictwa Wodnego Politechniki Warszawskiej, ul. Nowowiejska 20, 00-653 Warszawa

CHARAKTERYSTYKA ZLOZ FILTRACYJNYCH						
Filtr	Material filtracyiny	Srednice ziarn [mm]			${ }_{80}$	Wyso- kość zloia [m]
		d_{10}	${ }^{\text {d }}{ }_{80}$	$\mathrm{d}_{e}{ }^{*}$	d_{10}	
dwuwarstwowy	antracyt	0,89	1,6	1,12	1,8	0,63
	piasek	0,66	1,19	0,85	1,8	0,60
jednowarstwowy	piasek	0,69	1,31	1,02	1,9	0,80
$\mathrm{d}_{\mathrm{i} \text { min }}{ }^{+d_{i \max }}$						
$2 \mathrm{P}_{i}$						
\mathbf{P}_{i} - udzial wagowy frakeji i-tej						

warstwowym antracytowo-piaskowym, a druga zıożem jednowarstwowym piaskowym. Prędkość filtracji, stała dla obydwu złóż, wynosia $9 \mathrm{~m} / \mathrm{h}$ lub $12 \mathrm{~m} / \mathrm{h}$.
Cykl filtracyjny prowadzono do osiągnięcia gran:cznej straty ciśnienia wynoszacej $2-2,5 \mathrm{~m}$ słupa wody lub do przebicia filtru. Ogółem przebadano 27 cykli filtracyjnych.

Wyniki badań

Na podstawie analizy wybranych wskaźnikćw wody (wartości średnie podano w tab. 3) można stwierdzić, że prędkość filtracji w zakresie $\Omega-12 \mathrm{~m} / \mathrm{h}$ nie wpływała istotnie na jakosí wody zarówno po filtrze dwuwarstwowym, jak i jednowarstwowym. Wyniki pomiarów przy-

Tabela 3 WARTOSCI WYBRANYCH WSKAZNIKOW JAKOSCI PRZEFILTROWANE! WODY NA FILTRACH ANTRACYTOWO-PIASKOWYCH I PIASKOWYCH W ZALEĖNOSCI OD PREDKOSCI FILTRACJI

Wskaźnik	Jakość wody				
	przed filtrem	po filtrze			
		antracytowopiaskowym		piaskowym	
		$V_{f}=9 \mathrm{~m} / \mathrm{h}$	$V_{f}=12 \mathrm{~m} / \mathrm{h}$	$V_{f}=9 \mathrm{~m} / \mathrm{h}$	$\mathrm{V}_{\mathrm{f}}=12 \mathrm{~m} / \mathrm{h}$
Mętność [mg/dm']	2,7	1,15	1,2	1,0	1,1
Barwa [mg/dm ${ }^{3} \mathrm{Pt}$]	13,6	9,43	10,4	9,5	10,5
Glin [mg/dm ${ }^{2}$ Al]	0,58	0,029	0,048	0,02	0,05
Utlenialność $\left[\mathrm{mg} / \mathrm{dm}^{4} \mathrm{O}_{2}\right.$]	4,74	4,35	4,82	4,3	4,8

rostów strat ciśnienia w czasie cyklów filtracji wykorzystano do wyznaczenia dwóch wskaźników:

- szybkości względnego przyrostu strat ciśnienia S_{w}
-- stopnia wypełnienia porów złoża ε.
Szybkośc względnego przyrostu strat ciśnienia S_{w} jest wielkością ujmującą łącznie właściwości złoża oraz ilość i własności zatrzymywanych w złożu substancji. Może ona być obliczona za pomoca wzoru [4, 5]:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{w}}=\frac{\Delta \mathrm{h}_{\mathrm{t}}-\Delta \mathrm{h}_{\mathrm{o}}}{\Delta \mathrm{~h}_{\mathrm{o}} \cdot \mathrm{t}} \tag{1}
\end{equation*}
$$

w którym:
S_{w} - średnia szybkość względnego przyrostu strat ciśnienia w danej warstwie złoża, [h^{-1}]
Δh_{t} - strata ciśnienia w danej warstwie złoża po czasie t, [m słupa wody]
Δh_{o} - strata ciśnienia w danej warstwie złoża na początku cyklu filtracyjnego, [m słupa wody]
t - czas pracy filtru od początku cyklu, [h].
Stopień wypełnienia porów ε odzwierciedla działanie poszczególnych warstw złoża, a szczególnie ich udział w zatrzymywaniu zanieczyszczen. Wielkość ta obrazuje również wykorzystanie pojemności złoża. Może ona być zdefiniowana następująco [4, 5]:

$$
\begin{equation*}
\varepsilon=\frac{\mathrm{m}_{0}-\mathrm{m}_{\mathrm{t}}}{\mathrm{~m}_{\mathrm{o}}} \tag{2}
\end{equation*}
$$

gdzie:

$$
\begin{aligned}
& \varepsilon \text { - stopień wypełnienia porów } \\
& \mathrm{m}_{\mathrm{o}} \text { - porowatośc warstwy filtracyjnej } \\
& \mathrm{m}_{\mathrm{t}} \text { porowatość warstwy filtracyjnej po } \\
& \text { czasie filtracji t. }
\end{aligned}
$$

Stopień wypełnienia złoża ε wyznaczono pośrednio z zależności $[4,5]$:

$$
\begin{equation*}
\varepsilon=1-\left(\frac{1}{1+\mathrm{S}_{\mathrm{w}} \cdot \mathrm{t}}\right)^{1 / 3} \tag{3}
\end{equation*}
$$

Wzór (3) ustalono przy założeniu jednorodności uziarnienia i wypelnienia porów w rozpatrywanej warstwie zloża. W przypadku nierównomiernego uziarnienia i nierównomiernego wypełnienia porów na wysokości złoża filtru, wzór ten daje wyniki tym bardziej miarodajne, im rozpatrywane sa mniejsze wysokosci warstw złoża. Wielkość e wyznaczona ze wzoru (3) nie może być w peł̆ni miarodajna do ustalenia bilansu masy zanieczyszczen doprowadzanych do filtru i zatrzymy wanych w zlo$\dot{z} u$. Odzwierciedla ona bowiem głównie wplyw zatrzymywanych w złożu zanieczyszczeń na opory hydrauliczne złoża. Może więc być wykorzystywana przede wazystkim do analizy udziału peszczególnych warstw złoża w procesie filtracji, a nie do obliczania masy zatrzymywanych zanieczyszczeń.
Wyznaczone wartości S_{w} i ε podano w tab. 4.
Na podstawie analizy otrzymanych wartości S_{w}
i można podać następujące spostrzeżenia:

Tabela 4 WARTOSCI SZYBKOSCI WZGLĘDNEGO PRZYROSTU STRAT CISNIENIA S_{w} I STOPNIA WYPELNIENIA POROW ε w POSZCZEGOLNYCH WARSTWACH ZZOZ

	Wysokość zloza filtracyinego cm	$\mathrm{s}_{w} \quad \mathbf{h}-1$			
		$\mathrm{V}_{\mathrm{f}}=9 \mathrm{~m} / \mathrm{h}$	$v_{f}=12 \mathrm{~m} / \mathrm{h}$	$v_{f}=9 \mathrm{~m} / \mathrm{h}$	$\mathrm{v}_{\mathrm{f}}=12 \mathrm{~m} / \mathrm{h}$
$\begin{aligned} & \text { T } \\ & \text { D } \\ & \text { 늠 } \end{aligned}$		filtry dwuwarstwowe			
	cale zloże	0,1456	0,1546	0,3652	0,2766
	120-123	0,3907	1,1272	0,5754	0,6580
	90-120	0,6674	0,6482	0,6554	0,5504
	60-90	0,0602	0,1450	0,3021	0,1926
$\begin{aligned} & \text { 关 } \\ & \frac{6}{6} \end{aligned}$	30-60	0,0757	0,0395	0,3140	0,2661
	$0-30$	0,0191	0,0123	0,1682	0,0590
$\begin{aligned} & \text { 番 } \\ & \text { - } \end{aligned}$		filtry jednowarstwowe			
	cale zloze	0,3029	0,2715	0,3018	0,2917
	70-80	1,5547	0,8661	0,6619	0,5419
	60-70	0,2353	0,2840	0,4145	0,3629
	30-60	0,1039	0,0896	0,2164	0,2398
	0-30	0,1051	0,1243	0,2278	0,2365

- Złoże filtru dw , varstwowego antracy-towo-piaskowego charaku;iyzuje sie blisko dwukrotnie mniejszą sz, vkością względnego przyrostu straty ciśnienia S_{w} niż zloże filtru jednowarstwowego piaskowego. Wynika to z korzystniejszej pod wzgledem hydraulicznym struktury złoża dwuwarstwowego, oddziaływującej z kolei na korzystniejszy rozkład zanieczyszczeń w warstwach złoża.
- W złożu dwuwarstwowym większy stopień wypełnienia porów sięga znacznie giębiej niż w złożu jednowarstwowym. Z hydraulicznego punktu widzenia złoże dwuwarstwowe korzystne jest przy tym również i dlatego, że wysoki stopień wypełnienia porów występuje przede wszystkim w górnej warstwie antracytowej o stosunkowo niskich początkowych oporach hydraulicznych. - W granicach prędkości filtracji 9-12 m / h nie stwierdzono istotnego wpływu tego parametru na szybkość względnego przyrostu straty ciśnienia zarówno w odniesieniu do filtrów jednowarstwowych jak i dwuwarstwowych. Wyraźnie natomia ${ }^{\text {t }}$ przy wzroście prędkości filtracji spada stopień wypełnienia porów obliczony jako şednia ważona ze stopnia wypełnienia porów w poszczególnych warstwach. Swiadczy to o wpływie prędkości filtracji na wewnétrzna strukturę osadu gromadzonego w złozu filtracyjnym.
Wartość szybkości wzglẹdnego przyrostu strat ciśnienia S_{w} wykozzystano do wyznaczenia długości cyklu filtracy jnego:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{c}}-\frac{\mathrm{H}_{\mathrm{er}}-\Delta \mathrm{h}_{\mathrm{o}}}{\mathrm{~S}_{\mathrm{w}} \cdot \Delta \mathrm{~h}_{\mathrm{o}}} \tag{4}
\end{equation*}
$$

gdzie:
T_{c} - graniczny czas trwania cyklu filtracyjnego, h
H_{gr} - dopuszczalna graniczna wysokosć straty ciśnienia w złożu filtracyjnym, cm słupa wody
Δh_{0} - początkowa strata ciśnienia w złożu tiltracyjnym (w złożu czystym), cm słupa wody.

Graniczay czas cyklu filtracji obliczono przy jeanakowej dla cbydwu złóż granicznej wysokości siraty ciśnienia w złożu równej 2 m (tab. 5).

Tabela 5
WYZNACZENIE GRANICZNEGO CZASU TRWANIA CYKLU GRANICZNEGO

Filtr	$S_{w}\left[{ }^{\text {b-i] }}\right]$		$\Delta^{\text {h }}$ [$\left[\mathrm{cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right]$		$T_{0}{ }^{[h]}$	
	$\begin{gathered} V_{f}=9 \quad V_{f}=12 \\ {[\mathrm{~m} / \mathrm{h}]} \end{gathered}$		$\mathbf{v}_{f}^{v_{[\mathrm{m} / \mathrm{h}]}^{-9}} \underset{\substack{ \\v_{f}}}{ }=12$		$\mathbf{V}_{f}=\underset{[\mathrm{m} / \mathrm{h}]}{9} \quad \mathbf{V}_{f}=12$	
dwuwarstwowy antracytowopiaskowy	0,1456	0,1546	39,1	46,6	28,3	21,3
jednowarstwowy piaskowy	0,3029	0,2715	33,9	47,4	15,9	11,9

Z obliczeń wynika, że filtr dwuwarsiwowy charakteryzuje się znacznie dłuższym cyklem filtracyjnym w porównaniu z filtrem jednowarstwowym. Z tego wynikaja oczywiste korzyści eksploatacyjne polegajace na obniżeniu zużycia energii. Ma to równiez korzystny aspekt w odniesieniu do wymiarowania filtrów.

Wnioski

1. Na podstawie badańn stwierdzono, że filtracja wody powierzchniowej po kaogulacji przez zloża antracytowo-piaskowe i piaskowe nie wykazuje istotnych różnic w zakresie efektu uzdaniania wody w przedziale stosowanych prędkcści filtracji ($\mathrm{V}_{\mathrm{f}}=9-12 \mathrm{~m} / \mathrm{h}$).
2. Szybkość względnego przyrostu strat ciśnienia S_{w} okazaỉa się około dwukrotnie niższa dla
filtru dwuwarstwowego niż dla filtru jednowarstwowego. Nie stwierdzono przy tym istotnego wpływu prędkości filtracji (9—12 m/h) na wartość tego parameiru.
3. Wielkość stopnia wypełnienia porów ε może byé przydatna do analizy udzialu poszczegolnych warstw złoża w procesie filtracji wody. Analiza tej wielkości pozwala stwierdzić, ze złcże fil+ru dwuwarstwowego jest lepiej wykorzystane na swojej glębokosci w procesie filtracji, niż zloże filtru jednowarstwowego. Stwierdzono przy tym, że wielkośc stopnia wypelnien a porów wyznaczana cośrednio na podstawie wynikow badan hydraulicznych nie może być podstawą do badania bilansu masy zanieczyszczeń dopływających do filtru i zatrzymywanych w złożu.
4. Obliczony, graniczny maksymalny czas trwania cyklu filtracyjnego w badanym zakresie crędkości filtracji dla badanej wody jest blisizo civokrotnie diuższy w wypadku filtru dwuwarstwowego w porównaniu z filtrem jednowarstwowym.

LITERATURA

1. BPBK ,Stolica": Badania modelowe procesu filtracji na zlożu wielowarstwowym". Maszynopis. Warszawa 1981.
2. Stroitienyje Normy i Prawia EI-81-í4 Wexosnabzenije. Narużnyje Sieti i Soormżenija. Izi. Stroizdat. Moskwa. 1975.
3. Z. HEIDRICH i inni: Urzadzenia do uzdatniania wody. Zasady Projektowania i przyklady obliczeí. Arkady. Warszawa 1980 r.
4. H. KEOSS-TREBACZKIEWICZ: Zastosowanie filtrów kontaktowych do doczyszczania scieków biologicznie oczyszczonych. Dysertacja. Politechrika Warszawska 1978 r.
5. II. KEOSS..TR $P_{\imath} B A C Z K I E W I C Z, ~ M . ~ R O M A N: ~ A n a-~$ liza udzialu poszczególnych warstw zloża filtru kontaktowego w procesie doczyszczania sciekóv. Materiały na międzynarodową konferencje naukowa pt. Wysokoefektywne metody oczyszczania ścieków. Kraków 1978 r.

M. Roman, H. Kłos-Trębaczkiewicz

Efficiency of sand filters and anthracite-sand filters

The investigations reported here have revealed that no significant difference occurs in the treatment effects between sand filters and anthracite-sand filters when filtration rate ranges from 9 to $12 \mathrm{~m} / \mathrm{h}$. However, comparing the increment of pressure loss,
it become obvious that double-media filters disploy more advantageous operation parameters than do single-medium filters. Double-media filters are a^{\top}. found to dominate over single-medium filters in the degree of utilizing their surface area, which is incticated by the different degree of pore saturation. is far as the maximum length of filter-cycle duration (at the investigated filtration rates) is concerned, the values obtained for the double-media filter are approximately twice as high as those for the singlemedium filter.

