Edward Gomółka

UNIESZKODLIWIANIE OLEJÓW USUWANYCH ZE ŚCIEKÓW

W wysoko uprzemysłowionych krajach statystyki wskazują, że z ogólnej ilości zużytych olejów i smarów zaledwie 20% traci się bezpowrotnie, zaś w pozostałych 80% połowę można w pełni regenerować i recyrkulować. Z tego około 40% trzeba unieszkodliwiać [1]. Oleje odpadowe nie mogą trafiać na wysypiska odpadów, ponieważ w ten sposób przesuwa się punkt ciężkości na zanieczyszczenie gleby, ktōra staje się potencjalnym źródłem skażenia wód podziemnych produktami ropo- i smołopochodnymi, a w tym też i związkami rakotworczymi. Te szkodliwe dla środowiska naturalnego człowieka substancje organiczne, będące składnikami olejów mineralnych maja wysokie ciepło spalania, wynoszące około $40 \mathrm{MJ} / \mathrm{kg}$ $[2,3]$. Sa to wartości znacznie wyższe od ciepła spalania odpadów miejskich i węgla kamiennego [3, 4]. Dlatego unieszkodiwianie olejów odpadowych zazwyczaj polega na spalaniu lub termicznym ich przetworzeniu na paliwo gazowe w procesie zgazowania [5].

Unieszkodliwianie olejów odpadowych przez ich spalanie

Spalanie jest dość powszechnie stosowanym procesem unieszkodliwiania olejów odpadowych. Substancje te moga być spalane łącznie z odpadami stałymi w spalarniach [3] lub z klasycznym paliwem (stałym i ciekłym) stosowanym do ogizewania kotłów parowych oraz pieców przemysłowych. Oleje opałowe najcześciej są używane w kotlowniach okrętowych (rys. 1), w piecach martenowskich oraz w piecach w przemyśle hutniczym, chemicznym, cementowym, szklarskim i innych.
W urządzeniach tych możliwe jest zatem unieszkodliwianie olejów odpadowych przez ich spalanie łącznie z paliwami ciekłymi, które pochodzą z przerobu ropy naftowej oraz z przerobu smoły wysokotemperaturowej i smoły wytlewnej.
O przydatności olejów odpadowych do spalania w silowniach i piecach przemysłowych decyduje ich skład chemiczny (elementarny) i wyniki analizy technicznej. Aby więc ocenić przydatność olejów odpadowych do celów opałowych, konieczne jest poznanie ich właściwości: masy właściwej, temperatury zapłonu, wartości opałowej, lepkości, temperatury krzepnięcia, sklonności do koksowania, zawartości

[^0]

Rys. 1 Schemat kotlowni z palnikami olejowymi: 1 - zasobniki oleju, 2 - pompa, 3 - filtr, 4 - zbior. nik oleju, 5 - manometr, 6 - filtr, 7 - podgrzewacz oleju, 8 - kociot parowy, 9 - palnik do oleju opazowego
siarki i popiołu. Ponadto przyjmuje się jako zasade, by w danym urządzeniu stosować oleje opałowe o właściwościach odpowiednich dla danego typu palnika olejowego, gdyż do całkowitego spalania paliwa ciekłego konieczne jest staranne rozpylanie oleju, zapewniające odpowiednie wymieszanie oleju z powietrzem. W miarę potrzeby stosuje się obróbkę wstępną olejów odpadowych (np. usuwanie nadmiernej ilości wody lub zawiesin). Unieszkodliwianie olejów w omawianych urządzeniach zazwyczaj wiąże się z koniecznością instalowania odpowiednio dostosowanych do tego celu zbiorników olejów odpadowych, wyposażonych w wężownice grzewcze i mieszadła, instalacji podajacych oleje (filtry, pompa, palnik olejowy) oraz regulacji (automatycznej), utrzymujacej właściwe proporcje między ilością podawanego oleju opałowego i odpadowego, w zależności od temperatury spalin. Ponadto, w przypadku spalania olejów o niskiej temperaturze zapłonu niezbedne jest zastosowanie instalacji gazoszczelnej, zapobiegającej powstawaniu pożaru. Wszystko to razem sprawia, że unieszkodliwianie olejów odpadowych przez ich spalanie z paliwem ciekłym odbywa się nie tak powszechnie jak z paliwem stałym. Ze względu na wysoką wartość opałową olejów odpadowych nadają się one doskonale, jako dodatek do spalanych odpadów' stałych. Ponadto oleje stabilizują proces spalania odpadów miejskich o silnie zróżnicowanych wartościach opałowych, oraz mogą spełniać w spalarni role paliwa inicjujacego a także podtrzymującego palenie [3]. Zatem przy spalarni buduje się zazwyczaj zlewnię odpadów thuszczowo-olejowych [3]. Podobnie odpady (resztki) olejowe gromadzone na stat-
kach mogą być spalane w spalarniach okrętowych, kotłach giównych lub pomocniczych, silnikach głównych lub pomocniczych, wytwornicach gazu obojętnego [6]. Istnieją również spalarki przeznaczone do wyłacznego spalania olejów odpadowych i odpadów olejowych. Urządzenia te sa jednak mniej rozpowszechnione, natomiast spalanie olejów odpadowych w kotłowniach olkętowych jest dośc powszechnie stosowane, zwłaszcza na zbiornikowcach do przewozu ropy naftowej i jej produktów [6].
Innym rozwiązaniem technicznym stosowanym na zbiornikowcach do unieszkodliwiania olejów odpadowych jest spalanie w wytwornicach gazu obojętnego (rys. 2).

Rys. 2 Schemat wytwornicy gazu obojętnego Moss Rosenberg: 1 - zbiornik odpadów olejowych i sanitarnych, 2 - mieszadło, 3 - wężownica grzewcza, 4-6 - pompa, 5 - zbiornik paliwa pilotowego, 7 palnik, 8 - komora spalania, 9 - pompa cyrkulacyjna wody chtodzacej, 10 - chłodnica deszczowa (skruber), 11 -. cyklon oczyszczajacy spaliny z zanie. czyszczeńn statych, 12 - opakowane śmiecie

W tego rodzaju instalacji poza olejem odpadowym i emulsjami wodno-olejowymi można jednocześnie spalać odpady stałe i osady ściekowe. Do komory spalania podaje się powietrze, paliwo pilotujące oraz przygotowane wstępnie oleje odpadowe i osady ściekowe. Ponadto przez otwór wsadowy wprowadza się odpady stałe. Wytwarzane spaliny przepuszcza się przez skruber i kieruje do zbiorników ładunkowych lub do komina. Uzyskane w wytwornıcach gazu spaliny odpowiadajaz wymaganiom stawianym gazom obojętnym, wprowadzanym do zbiorników ładunkowych.

Unieszkodliwianie olejów odpadowych przez ich zgazowanie

Proces zgazowania olejów polega na termicznym rozpadzie węglowodorów ciężkich o dużych cząsteczkach i złożonej budowie - na węglo-
wodory lekkie o prostszej strukturze chemicznej z jednoczesnym ich czéściowym utlenianiem, charakterystycznym dla procesów zgazowania paliw w ogóle. W wyniku tych przemian, jako produkty koncowe procesu zgazowania olejów otrzymuje się paliwo gazowe złożone z metanu i innych węglowodorów lotnych, wodoru, tlenku węgla, dwutlenku węgla, a także azotu, jeżeli do procesu zgazowania olejow było używane powietrze.
Wartość opałowa gazu pochodzącego ze zgazowania olejów zawarta jest w granicach od 15910 do $20515 \mathrm{~kJ} / \mathrm{m}^{3}$ normalny i zależy m . in. od technologii przeprowadzonego procesu. W celu poprawy wydajności procesu zgazowania i uzyskania pożądanego składu paliwa gazowego w nowoczesnych instalacjach zgazowania olejów znajdują coraz szersze zastosowanie katalizatory. Jako katalizatory używane są albo mineraly jak bentonit, boksyt, montmorylonit, albo sztuczne tlenki niklu, kobaltu czy molibdenu [7, 8]. A zatem w paktyce przemysłowej stosowane są metody zgazowania olejów, przy zastosowaniu pary wodnej bez katalizatorów, przy zastosowaniu katalizatorów i pary wodnej oraz przy zastosowaniu powietrza lub tlenu.

Ponieważ w procesie zgazowania olejów zachodzą reakcje chemiczne endotermiczne, do zainicjowania oraz utrzymania ich przebiegu konleczne jest doprowadzenie znacznych ilości ciepła, które dostarcza się przez spalanie części zgazowanego oleju. Dlatego proces zgazowania oleju składa się z cyklu gorącego, czyli podgrzewania i zimnego, tj. zgazowania. W czasie cyklu gorącego, na skutek spalania wtryskiwanego oleju następuje podgrzanie wypełnienia reaktora. Następnie w cyklu produkcyjnym (zimnym) do rozgrzanego reaktora wprowadza się olej wraz z odpowiednim czynnikiem zgazowującym, skutkiem czego wytwarza się w reaktorze paliwo gazowe.

Poniżej opisano dwie metody zgazowania olejów, przy zastosowaniu pary wodnej bez katalizatora (metoda Hall) i w obecności katalizatora (metoda Segas).
W metodzie Hall (rys. 3) rozkład i zgazowanie oleju przebiega w dwóch identycznych reaktorach 1 i 2, wypełnionych cegłą szamotową.
W czasie ogrzewania tych reaktorów powietrze wprowadzane zostaje od dołu, a od góry wtryskuje się olej. Na skutek tego spala sié w reaktorze nie tylko każdorazowo dodana tam porcja oleju, ale także resztki niezgazowanego oleju z poprzedniego cyklu procesu oraz wydzielony koks naftowy (sadza). Gazy spalinowe, po wykorzystaniu ewentualnie ich ciepła kierowane są do komina. Po podgrzaniu wypelnienia reaktora do 1073 K następuje przesterowanie urządzeṇ i zamiạst powietrza, do obu reaktorów s'eerowana zos'aje cara wodna, która na początku tego procesu shizy do przedmuchania aparatury, a następnie dopiero do zgazowania oleju. Wytworzone paliwo gazowe oczyszcza się w pluczce 3, chłodnicy 4 i elektrofiltrze 5.

Rys. 3 Schemat technologiczny metody Hall: 1, 2 reaktor, 3 - pluczka, 4 - chtodnica, 5 - elektrofittr, $6-z a s o b n i k$

Urządzenie do zgazowania olejów wg metody "Segas" składa się z kotła do wytwarzania pary opalanego olejem przegrzewacza pary 1 , reaktora 2 i przegrzewacza powietrza 3 (rys. 4).
W urządzeniu tym zgazowanie oleju jest procesem cyklicznym i przeprowadza się w reaktorze, w którym znajduje się warstwa katalizatora wykonanego w postaci pierścieni. W czasie zgazowania (cykl zimny) - rys. 4a, trwającego 160 s para z kotła przeplywa od dołu przez wypełnienie przegrzewacza i ogrzewa sie do temperatury 973-1073 K. Do komory w głównej części przegrzewacza pary jest wtryskiwany olej, który odparowuje i wraz z parą przedostaje się do górnej cześci reaktora. Temperatura w reaktorze wynosi w środku warstwy katalizatora 1273 K , natomiast u góry 1 u dolu warstwy katalizatora• 973-1073 K. Wytworzony w reaktorze gaz z resztą nieprzereagowanej pary przeplywa od dolu przez przegrzewacz powietrza 3, gdzie ogrzewa wypelnienie przegrzewacza. Następnie gaz przedostaje sié do urządzeń oczyзzczających. Po okresie zgazowania następuje krótki (25 s) czas płukania (przedmuchiwania) para, po czym następuje cykl podgrzewania (rys. 4b) trwający 160 s. Ma on na celu spalenie, za pomoca doprowadzonego powietrza koksu naftowego (sadzy) osadzonego w urządzeniu i w ten sposób uzyskanie i zakumulowanie pewnej ilości ciepła, potrzebnej do ponownego cyklu zgazowania. Powietrze wtłacza się od góry do przegrzewacza powietrza 3, skąd wraz z wỳtworzonymi' spalinami przepływa od dołu przez reaktor 2, od góry przez przegrzewacz pary 1 i dalej do komina.
W przypadku gdy ilość ciepła uzyskana z wypalenia osadzonego koksu naftowego nie jest wystarczająca do prowadzenia procesu zgazowania, stosuje się dodatkowo, w czasie podgrzewania spalanie gazu surowego (lub oleju opałowego), dostarczonego do palników gazowych (lub olejowych), osadzonych w przegrzewaczach powietrza 3 i pary 1 . Fo cyklu podgrzewania również stosuje się płukanie parą w czasie około 10 s . Jednostkę produkcyjną stanowią zazwyczaj dwa bližniacze urządzenia,

Rys. 4 Schemat instalacji ,SSegas": a-cykl zgazowania, b - cykl podgrzewania, 1 - przegrzewacz pary, 2 - reaktor, 3 - przegrzewacz powietrza
w której gdy jedno urządzenie znajduje się w cyklu zgazowania, to drugie w tym czasie jest w cyklu podgrzewania.
W urzadzeniu do zgazowania olejów wg metody Hall uzyskuje się wysokoenergetyczny gaz o wartości opałowej, wynoszącej średnio 43960 $\mathrm{kJ} / \mathrm{m}^{3}$, natomiast urządzenie Segas wytwarza gaz o wartości opałowej około $17585 \mathrm{~kJ}_{\mathrm{k}} \mathrm{m}^{3}$ normalny [7, 8]. Dlatego urządzenia do krakowania olejów metoda Segas sa na ogół budowane w gazowniach do wyiwarzania gazu miejskiego z ciężkich olejów opałowych [8, 9]. W praktyce przemysłowej rozwinięto szereg innych konstrukcji urządzeń do zgazowania (krakowania) olejów. Urządzenia te daja obecnie możliwošć doboru odpowiedniej metody do zgazowania każdego gatunku oleju.
Unieszkodliwianie olejów odpadowych przez ich zgazowanie może być realizowane ponadto łącznie z paliwem stałym, tj. z węglem kamiennym, brunatnym, z torfem lub koksem, a także o odpadami stałymi [5, 10]. W Związku Radzieckim prowadzi sie np. badania nad zgazowaniem w generatorach (inaczej czadnicach) nisko jakościowych mazutów i smół generatorowych [11]. M. in. przeprowadzono próby jednoczesnego zgazowania torfu i smoly torfowej w generatorze typu UZT (rys. 5).
Smola w postaci rozpylonej była wprowadzana do wolnej przestrzeni utworzonej w goracej strefie generatora pod stożkiem (chłodzonym woda). Wypróbowano w tych dosiwiadczeniach

Rys. 5 Schemat instalacji generatora UZTM
dwa sposoby podawania smoiy: dyszą tylko pod ciśnieniem oraz za pomocą dyszy z zastosowaniem spręzonego powietrza. Ten drugi sposób był korzystniejszy, nie występowalo przesączanie się smoly przez warstwę zużla. Zgazowywano torf miernej jakości o zawartości miału do $26^{0} / 0$ i wilgotności do $45^{0} / 0$. Temperatura pod stożkiem wy nosila od 750 do $800^{\circ} \mathrm{C}$ (1023-1073 K). Hość podawanej smoly wahala się około $0,2 \mathrm{~kg} / \mathrm{kg}$ torfu, a przy gorszej jakości torfu od 0,075 do $0,135 \mathrm{~kg} / \mathrm{kg}$ torfu. W tych warunkach smoła praktycznie całkowicie ulegała zgazowaniu, jak też wytworzony z niej koks smolowy. Wyniki zgazowania smoły i torfu zestawiono w tabeli 1 .
Do zgazowywania olejów wraz z koksem lub węglem, szczególnie przydatny jest tzw. uniwersalny generator gazowy [10] (rys. 6).
Urządzenie to wewnątrz szybu posiada wyodrębnioną komore odgazowania ogrzewana przeponowo, za pomocą oplywającego ja gorącego gazu generatorowego, który przed przejściem do palników pieca gazowniczego oddaje częṡć swego ciepła. Komora odgazowania posiada wylot dla gazu umieszczony na $1 / 3$ wysokosci załadowania i zaopatrzony w odrebona odbieralnice hydrauliczną. W generatorze stosuje sie podmuch powietrzno-parowy. Przy zgazowywaniu węgla najpierw nastepuje jego odgazowanie z wytworzeniem gazu o cieple spalania 11583-12580 kJ/normalny m^{2}, który po odnrowadzeniu przez wylot zostaje zmieszany z gazem produkcyjnym. Odgazowany koks zostaje w dalszej cześci zgazowany na gaz o cieple spalania $4600 \mathrm{~kJ} /$ normalny m^{3}, który służy do ngrzewania komór pieca gazowniczego.

Tabela 1

Oznaczenie	Jednostki	Wartości		
Zuiycie torfu	$\mathbf{k g} \cdot \mathrm{h}^{-1}$	2610	2720	2620
Zawartość wody w torfie	\%	43,12	43,80	44,56
Zawartość mialu w torfie	\%	15,7	26,1	19,2
Zużycie smoly	kg.h-1	200	220	350
Zużycie powietrza na rozpylenie smoly	$\mathrm{Nm}^{3} \cdot \mathrm{~h}^{-1}$	176	173	178
Temperatura pod stożkiem	K	1023	1000	1081
Cieplo spalania gazu	$\mathrm{kJ} / \mathrm{Nm}^{3}$	6008	5581	5970
Sklad gazu: $\mathbf{C O}_{2}$	\%	8,6	9,6	9,4
O_{2}	\%	0,2	0,1	0,15
$\mathrm{C}_{n} \mathbf{H}_{m}$	\%	0,6	0,6	1,0
CO	\%	24,7	21,7	22,6
H_{2}	\%	14,8	14,7	14,1
CH_{4}	$\%$	2,6	2,5	2,8
N_{2}	\%	48,5	50,8	49,95

Rys. 6 Schemat generatora uniwersalnego
Do przestrzeni ponad wsadem generatora może być dodatkowo wtryskiwany olej, dzięki czemu ciepねo spalania gazu otrzymywanego ze strefy odgazowania może wzrosnąć nawet do 18000 $\mathrm{kJ} /$ normalny m^{3}. Z 1 kg zgazowanego w ten sposób oleju otrzymuje się od 1,8 do 2,2 normalnego m^{3} gazu miejskiego. Przeprowadzone próby zgazowania oleju opałowego w ilosci 30% wsadu koksowego generatora dały również pozytywne wyniki. Także z pozytywnym rezultatem przeprowadzono próby zgazowania oleju w ilościach $50-60^{\circ} \% \mathrm{w}$ siosunku do wsadu koksowego [10]. Zaletą tej metody zgazowania jest bardzo dobre wykorzystanie ciepła oraz wielka elastyczność zarówno w ilości zgazowywanego oleju, ilości wytworzonego gazu, jak i wartości ciepła spalania gazu.

W Centralnym Laboratorium Gazownictwa opracowano i zaprojektowano generator wyposażony w karburyzator (rys. 7) do zgazowywania oleju łacznie z koksem [12].

Rys. 7 Schemat generatora z karburyzatorem
Na rysunku górnym przedstawiono schemat urzadzenia w czasie zgazowania a na dolnym w czasie podgrzewania. Dysze do wtryskiwania oleju osadzone sa na obwodzie generatora, ponizej powierzchni wsadu koksowego i w górnej pokrywie karburyzatora, współprądowo do przepływającego gazu. W czasie zgazowywania olej jest wtryskiwany do generatora i do ka buryzatora, a pod ruszt generatora wtlacza sie mieszanine powietrzno-parowa. W generatorze przebiega proces zgazowania koksu na gaz generatorowy i proces krakowania oleju na gaz olejowy. Krakowanie oleju zachodzi w wairstwie górnej wsadu koksowego działaniem ciepia swobodnego gazu generatorowego. Wytwarzany z oleju koks naftowy zostaje zgazowany łącznie z koksem wsadowym. Wyplywajaç z generatora gaz stanowi mieszanine gazu generatorowego, a jego ciepło spalania wynosi olcho $8300 \mathrm{~kJ} /$ normalny m^{3}. Gaz ten z kolei przepuszcza się przez nagrzany karburyzator, w ktotym zostaje wzbogacony gazem ze skrakowania oleju, do wartości ciepla spalania 12560 $\mathrm{kJ} /$ normalny m^{3}.
W czasie podgrzewania, przebieg procesu w generatorze jest identyczny jak w czasie zgazowania, natomiast do karburyzatora wthacza sie zamiast oleju powietrze, które powoduje spalanie doprowadzonego z generatora gazu i koksu naftowego, osadzonego w czasie zgazowania. W karburyzatorze zostaje zakumulowane cieplo dla kolejnego cyklu zgazowania, a gorace spaliny opuszczajace karburyzator ogrzewaja dododatkowo kocioł odzysknicowy. W ten sposób ze zgazowania 1 kg oleju opałowego o cieple spalania $45000 \mathrm{~kJ} / \mathrm{kg}$ uzyskuje się 1 normalny
m^{3} gazu olejowego o cieple spalania 33500 $\mathrm{kJ} / \mathrm{m}^{3}$, czyli sprawnosé zgazowania oleju wynosi $72^{0} / 0$ [10].
Opisane metody zgazowania olejów bez dodatku i z dodatkiem innych paliw stałych nie wyczerpuja oczywiście wszystkich technicznych możliwości zgazowania olejów pochodzenia bitumiczacgo i smofowego, a tym samym i unieszkodliwiania olejów odpadowych.
Ważnym wskaźnikiem kwalifikującym przydatnosc olejow odpadowych do ich zgazowania jest m. in. zawartość w nich węgla i wodoru pierwiastkowego, gdyż przy wartości stosuniuu C/H, przekraczającym 10 znacznie obniża się sprawność zgazowania olejów [10].

Możliwości unieszkodliwiania odpadów olejowych w procesie odgazowania węgla kamiennego

Odgazowanie węgla kamiennego czyli jego ogrzewanie bez dostępu powietrza, podobnie jak zgazowanie ma na celu wytwarzanie gazu. Obok gazu w procesie odgazowania węgla tworzą się również koks i smoła. W zależności od tego, czy proces odgazowania weggla przebiega w koksowni, czy w gazowni podstawowym produlttem jest koks lub gaz, natomiast pozostaie produkty saz uboczne.
Procesy technologiczne prowadzone w gazowniach mają więc na celu wytworzenie gazu, natomiast prowadzone w koksowniach nastawione są na ilość i jakość koksu, który w zależności od zastosowania pownien mieć różna charakterystykę. Koks hutniczy, używany do wielkich pieców powinien mieć np. duża wytrzymałośc mechaniczną i małą zawartość popiolu przy odpowiednim rozdrobnieniu, podczas, gdy wymagania w stosunku do koksu opalowego, używanego do opalania kotłów nie sa tak wysolie. Inna jeszcze charakterystyke powinien posiadać koks przeznaczony dla przemysłu chemicznego.
Zasadniczym zagadnieniem w koksownictwie jest więc dobór właściwego węgla wsadowego do produkcji. W warunkach krajowych (i nie tylko), gdzie nie dysponuje sie odpowiednim bogactwem typów i odmian węgli, pozwalajacych na bezpośrednie uzyskiwanie wymaganych gatunków koksu, zachodzi konieczność przygotowywania jako surowca wsadowego do produkcji mieszanek różnych gatunków i typów weegla według ściśle określonej instrukcji. Podkreślić tu należy, że niektóre mieszanki wsadowe zawierają również pewne ilości olejów mineralnych. Ich obecność ma na celu polepszenie zdolności spiekania węgla wsadowego [13, 14].
O ile odgazowanie węgla prowadzone w koksowniach ma na celu wytwarzanie koksu, to proces ten realizowany w gazowniach ukierunkowany jest na maksymalna produkcje gazu o ustalonej jakości. W związku z tym dla gazownictwa istotne znaczenie ma dobór surowca do produkcji. Węgiel dobierany jest w aspekcie uzyskania koksu dobrej, jakości, jak również wytworzenia dużych ilości gazu.

Stosuje się więc w gazowniach glównie węgiel kamienny gazowy.
W gazowniach, podobnie jak i w koksowniach proces odgazowania węgla prowadzony jest przy przeponowym ogrzewaniu wsadu szczelnie zamkniętego w komorach zgrupowanych w piecowni. Sam proces odgazowania węgla w gazowniach prowadzi się w temperaturze nieco niższej niż w koksowni i zazwyczaj nie przekraczającej 1273 K . Wywiera to korzystiny wpływ na jakość gazu, a szczególnie powoduje znaczne obniżenie w nim zawartosici naftalenu. Czas ogrzewania węgla w komorze, czyli czas garowania zależy od wielkości komór i jest oczywiście tym dłuższy, im większe, a szczególnie im szersze sa komory. W gazowniach czas ten wynosi od 6 h dla retort, do 24 h dla komór skośnych [15, 16], a w koksowniach średnio $20 \mathrm{~h} . \mathrm{W}$ tym czasie przebiega szereg przemian fizyczno-chemiczinych, w wyniku których tworza, się koks, smoła i gaz. Po uplywie czasu gazowania odgazowany koks usuwa się z komory, do której wprowadza się kolejny wsad węglowy.
W gazownictwie stosowany jest także proces odgazowania węgla metodą ciągłą. Realizowany on jest w ten sposób, że wegiel wsadowy podawany jest z góry do recraty malymi porcjami, natomiast koks odbierany jest od dolu slimakiem w sposób ciągły. W celu zwiększenia wydajności gazu w koncowym czasie odgazowania węgla, wprowadza siẹ do komory z rozgrzanym koksem parę wodną lub parę wơną z olejem. Rozżarzony koks dziala jako przegrzewacz i powoduje rozpad oleju, połączony z wytworzeniem gazu wodnego oraz węglowodorów gazowych. Na wyprodukowanie $1 \mathrm{~m}^{3}$ gazu wodnego karburyzowanego, o cieple spalania $15000-16700 \mathrm{~kJ} /$ normalny m^{3} zużywa się 0,2 do $0,3 \mathrm{~kg}$ oleju wzglednie smoły [15]. Tak więc współczesne gazownictwo wykazuje znaczne zainteresowanie olejami, jako surowcem do produkcji paliwa gazowego. Niestety, baza surowcowa olejów do zgazowania jest obecnie w naszym kraju uboga, gdyż do dyspozycji są tylko ciężkie oleje opatowe pochodzenia naftowego o stosunku C/H przekraczajaccym 9, co znacznie obniża ich przydatność do zgazowania. W związku z tym istniej możliwość wykorzystania do produkcji gazu olejów odpadowych nie nadajacych się do regeneracji np. usuwanych ze ścieków. Unieszkodliwianie olejów odpadowych niejako ,"przy okazji" odgazowania węgla kamiennego, czyli w procesie produkcji gazu miejskiego w gazowni ma szereg zalet zarówno z punktu widzenia ochrony śodowiska naturalnego (jest to proces hermetyczny, bezodpadowy), jak i odzysku energii (uzyskuje się paliwo gazowe i ciekłe produkty pogazowe np. smoła). Ponadto sposób ten nie wymaga no-
wych inwestycji, ani leż transportu na duże odległości, gdyż gazownie występują w miastach częśeiej niż komunalne spalarnie odpadów miejskich. W przeciwieństwie do procesu spalania nie powoduje też emisji produktów agresywnych i korozyjnych $\left(\mathrm{SO}_{2}, \mathrm{NO}_{\mathrm{x}}\right)$ do powietrza a mosferycznego oraz nie powoduje korozji urządzeń, gdyż unieszkodliwianie odbywa się w komorach krzemionkowych lub szamotowyth, a conadto wytwarzany gaz miejski poddawany jest oczyszczaniu.
Te i inne zalety stanowiły przesłanki do podjécia badań nad możliwością uniezzkodliwiania odpadów olejowych przez ich odgazowanie z węglem kamiennym.
Badania te sa prowadzone w Instytucie Inżynierii Ochrony Srodowiska Politechniki Wrocławskiej, a poniewaz problematyką są zainteresowane zarówno przemysł gazowniczy, jak i ochrona srodowiska - temat ten jest finansowany przez zakłady przemysłowe i dofinansowywany z funduszu Ochrony Srodowiska.

LITERATURA

1. S. SZULC: Korzystna wspólpraca. Sigma - Magazyn Problemowo-Informacyjny Politechniki Wroclawskiej. Wroclaw, nr 4-107 1979/80, str. 6.
2. E. GOMOEKA: Wykorzystanie usuwanych ze ściekow olejów do produkcji gazu miejskiego. Materiały Konferencji Naukowo-Technicznej: Wykorzystanie niekonwencjonalnych źródel energii. Częstochowa, wrzesień 1981, str. 60.
3. E. KEMPA: Gospodarka odeadami miejskimi. Arkadv, Warszawa 1983.
4. B. ROGA, M. WECLEWSKA: Fizykochemia procesu spalania wegla i gazu. PWT Warszawa 1956.
5. E. KEMPA: Systematyka osadów ściekowych. Prace Naukowe Instytutu Inżynierii Ochrony Srodowiska Politechniki Wroclawskiej. Monografie, Wroclaw 1976.
6. M. MA£ACZYŃSKI: Technika ochrony przed zanieczyszczeniamii ze statków. Wyd. Morskie. Gdańsk 1979.
7. J. GALICKI: Technologia gazownictwa. Min. Górnictwa i Energetyki 1967.
8. W. KIJEWSKI, J. NACZYŃSKI, W. ŻYŁKO: Problemy i stan gazownictwa w NRD na tle prac niektórych placówek. GWITS nr 4-5 Warszawa 1963 s. 123.
9. H. MANKA: Metody otrzymywania gazów opalowych na drodze zgazowania olejów.
10. J. NACZYNSKI: Pokrywanie szczytowych poborów gazem generatorowym. GWiTS nr 10 1963, s. 346.
11. K. W. MALIKOW, P. A. KANOWA, G. S. KARASIK, N. S. LINIECKIJ, G. M. PASTUCHOW, G. A. PUSZKINA: Gazowaja Promyszlennost 8, nr 2 (1963) s. 15.
12. J. NACZYNSKI, J. PIESKACZ, J. TROMSZCZYNSKI: Zgloszenie patentowe 1963.
13. B. ROGA: Węiel kamienny przeróbka i użytkowanie PWT 1956.
14. J. KOWALSKI: Wytlewanie paliw stałych. Katowice 1952.
15. Poradnik Koksochemika część II Gazownictwo PWT Katowice 1951.
16. K. KACZMAREK: Produkcja gazu węglowego w gazowniach klasycznych na obecnym etapie. GWiTS nr 8 1980, s. 236.

E. Gomótka

DISPOSAL OF OLIY SUBSTANCES SEPARATED FROM OIL-CONTAINING WASTEWATER

Oily matter separated from wastewaters requires either regeneration or disposal, which is generally
performed by thermal methods. In this paper, consideration is given to some methods of disposal. Thus, separated waste oils may be disposed of by combustion in a combination with solid fuel, by gassing with water vapour (Hall method, Segas method) or during degassing of bituminous coal. The advantages of each of these processes are discussed in detail.

[^0]: Doc. dr inż. E. Gomólka, Instytut Inżynierii Ochrony Srodowiska Politechniki Wrocławskiej, Wyb. Wyspiańskiego 27, 50-370 Wrocław.

