dr inż. January Bień
dr inż. Łucja Fukas-Plonka
mgr inż. Urszula Szymura
mgr inż. Krzysztof Szymański
Instytut Inżynierii i Technologii
Wody, Ścieków ; Odpadów
Politechniki Śląskiej

WYBRANE ASPEKTY PROJEKTOWANIA SIECI KANALIZACYJNEJ NA TERENACH CZYNNEJ EKSPLOATACJI GÓRNICZEJ

Obiekty inżynierskie projektowane i budowane na terenach czyanej eksploatacji codziemnej musza być zabezpieczone przed wplywem szkód górniczych, będących nastepstwem zmiany układu sił w gruncie. Problem ten dotyczy przede vuzystkim obszaru Górnego Sląska, gdzie eksfloatacja górnicza jest szczególnie intensywna.
W nincej zym opracowaniu zwrócono liwage przede wszystkim na wpływ, jaki wywiera ekeploatacja górnicza na przewody s:eci fanalizacyjnej, jak rćwnież na pods!awowe problemy, z którymi można się spoikać przy eksploatacji l-analizacji, na prz-kladzie wybranogo kolek!ora sanitarnego.

Wpływ eksploatacji górniczej na przewody sieci kanalizacyjnej

Budowa rurociągów kanalizacyjnych, w warunkach destrukcyjnego działania przesuwającego się terenu, wymaga specjalnej techniki, zapobiegającej w miarę możliwości przewidywanym awariom. Zagrożenie przewodów kanalizacyjnych w warunkach intensywnych szkód górniczych sprowadza się głównie do zagrożenia konstrukcji sieci oraz warunków hydraulicznych [1, 7]. Uszkodzenia konstrukeji sieci kanalizacyjnej determinowane są przede wszystkim rodzajem gruntu, w którym została ona ułożona oraz stopniem deformacji terenu. Niebezpieczne jest zarówno zgniatanie przewodów na skutek pionowych odkszałceń terenu, jak również ich rozrywanie związane z pełzaniem gruntów. Zagrożenie warunków hydraulicznych w sieci związane jest głównie ze zmianami spadków kanałów i niebezpieczeństwem zakłócenia w przewodach przepływu grawitacyjnego. Zmiany spadków kanałów mogą ograniczać lub nawet uniemożliwiać prawidłowe funkcjonowanie sieci. Zmniejszenie spadku kanału może prowadzié do lokalnych spiętrzeń ścieków w sieci i istotnego zmniejszenia prędkości przepływu, co w konsekwencji powoduje zamulenie kanałów osadem.
Ważne jest zatem przyjęcie, już w fazie projektowania, najbardziej efektywnych środków,
ograniczających szkodliwy wpływ eksploatacji górniczej na prace sieci. Srodki te podzielić można na dwie grupy [1]:

- środki ogólne z możliwością ich stosowania bez znajomości zarysów przyszłej niecki osiadania terenu, do których zaliczyć nale$\dot{z} y$: układanie kanałów z maksymalnymi spadkami (w ce'u uzyskania pewnej rezerwy dla ewentualnych ujemnych wartości odkształcenia kanału), zwiększenie przekroju projektowanego kanału jako rezerwe w przypadku zmniejszenia jego przepustowości, przy obniżeniu spadku kanału, a także połączenie kanałów w obwodową sieć zamkniętą,
- środki specjalne stosowane, gdy na etapie projektowania uwzględnia się ekspertyzę geologiczno-górniczą \mathbf{z} planem izolinii osiadań i przewidywanymi wielkościami odksz!ałceń terenu, do których zaliczyć trzeba: trasowanie kanałów możliwie stycznie do izolinii osiadań, zakładanie kanałów ze spadkami powiększonymi o wielkość przewidywanych przeciwspadków terenu, projektowanie sieci w sposób gwarantujący szybkie i tanie usuwanie następstw uszkodzen oraz stosowanie usprawnionych, elastycznych połączeń odcinków rur.

Dotychczasowe normy i wytyczne nie podają w ścisły i jednoznaczny sposób zasad projektowania sieci kanalizacyjnej na terenach eksploatacji górniczej. Istniejące wymagania tech-niczno-budowlane [2], dotyczące podłączeñ kanalizacji ściekowej i deszczowej stwierdzaja, że spadki ciągów kanalizacyjnych, wymagane ze względów technologicznych, należy powiększyć o wartość przewidywanych zmian nachylenia terenu a także stosować minimalne głębokości ułożenia przewodów, co tłumaczyć należy ułatwieniem ich naprawy w razie awarii. Wydaje się, że najlepszym środkiem przeciwdziałania skutkom szkód górniczych jest zagwarantowanie szybkiego i taniego usunięcia następstw uszkodzeń. W tym kontekście, gdyby nie konieczność zachowania odpowiednich warunków sanitarnych i higienicznych, wska-

Rys. 1 Rzeźba terenu przekazanego pod budowe kolektora „X" w 1979 roku.
zanym by było odprowadzenie s̉cieków kanałami otwartymi.
Problemy prowadzenia przewodów sieci kanalizacyjnej w warunkach szkód górniczych oraz zasady projektowania zbieraczy ujmuje norma [3] i wytyczne [8, 9]. Ostatnie zarządzenia w tym zakresie [4, 5],dotyczące prac projektowych i nadzoru inwestycyjnego ustalaja zasady odpowiedzialności za nieprawidłową ich realizacje. Takie ujęcie problemu projektowania i eksploatacji przewodów kanalizacyjnych na terenach szkód górniczych wymaga dlaszego uzupelnienia.
Awarie sieci kanalizacyjnej na terenach czynnej eksploatacji górniczej związane są z odkształceniami terenu, powodujacymi najczęściej uszkodzenia połączeń rur, wejść przewodów do studzienek oraz powstawaniem przeciwspadków kanału.
Przyczyna tych i innych awarii są przede wszystkim nierównomierne w czasie i przestrzeni ruchy poziome terenu, charakteryzowane przez:

- wielkość minimalnego promienia krzywizny terenu ($\mathrm{R}_{\min }$)
- maksymalne odkształcenie poziome ($\mathrm{E}_{\mathrm{max}}$).

Występujące równocześnie odkształcenia pionowe (ugięcia) terenu prowadzą głównie do zmian warunków hydraulicznych w przewodach.

W praktyce, wielkości wymienionych odkształceń terenu wahają się w bardzo szerokich granicach. I tak promien krzywizny terenu waha się od jednego do kilkudziesięciu kilometrów, przy czym wielkość ta może być jeszcze mniejsza, szczególnie przy bardzo płytkiej obudowie eksploatowanych podkładów, zaś wielkość odkształceń poziomych może dochodzić do kilkudziesięciu milimetrów na metr bieżący (już przy pełzaniu powyżej $9 \mathrm{~mm} / \mathrm{m}$ mogą występować pękniecia terenu lub powstawać większe szczeliny) [6].
Problemy, z którymi spotkać się może projektant sieci kanalizacyjnej w tak specyficznych warunkach terenowych, przedstawiono na przykładzie wybranego czynnego kolektora "X" w jednym z górnośląskich miast. Kolekior ten za rojektowano w nawiązaniu do planu syiu-acyjno-wẏokościowego terenu w 1979 roku (yys. 1) wzdłuż płynącego potoku „S".
Fodstawa opracowania projektu iechnicznego kolekto: a "X" była ekspertyza geologiczno--górnicza z przewidywanymi wielkościami odkształceń cala zoku 1990 i okre.u docelowego, F walifikujacymi ten teren do III ka egorii przydatności do zabudowy ($\mathrm{E}_{\max }=6 \%$). W eksperfyzie uwzględniono fakt, że bezpośrednio pod projektowana rasa kolektcra wybierano w latach 1975-1977 fokład o giubos̃ci $2,8 \mathrm{~m}$ na średniej głદ̨bokości $6 \overline{0} \mathrm{~m}$ mysiemem ścian podłużnych z zawałem s:o u, p-zy czym font eksplca acji przemie zczał - e z kierurıu pótnocnego wschodu na poludniowy zachód. W okresie dynamicznych przemieszczeń górotworu i powierzchni naruszonego eksploatacją pokładu rozpoczęto w 1979 roku wybieranie drugiej (przystropowej) warstwy o grubości $2,6 \mathrm{~m}$, na średniej głębokości 650 m , systemem ścian podłużnych z zawałem stropu. Ekspertyza górnicza przewidywała możliwość wystapienia wzdłuz̀ trasy kolektora, w okresie docelowym przeciwspadków do wartości $2,4 \%$. W oparciu o dane zawar'e w tej ekspertyzie dla okresu docelowego, przyjetto w projekcie technicznym spadki poszczególnych odcinków w granicach 2,0-3,3\% (projekt zrealizowano w 1980 r.).
Pod trasa wybudowanego kolektora kształtowala się dynamiczna niecka obniżenia terenu, w obrębie której wystąpiło szczególnie niebezpieczne dla rurociaggu działanie sił ściskajacych. W miare rozwoju prowadzonej w latach 1979-1983 eksploatacji pokładów, obniżenie terenu zwiększało się przeciwnie do zaprojektowanego spadku kolektora, powodujac powstanie na odcinku od studzienki 2 do 6 przeciwspadku, co było bezpośrednią przyczyna przebudowy kolektora na tym odcinku.
Kolektor ułozono ze spadkiem 1% w odniesieniu do rzeźby terenu w 1980 r. Już w roku 1982 pomiary niwelacyjne na trasie kolektora wykazaly bardzo niekorzystne zmiany dla prawidłowej jego pracy: teren w tym rejonie obniżył się w granicach od $0,54 \mathrm{~m}$ do $2,8 \mathrm{~m}$ w kierunku przeciwnym do przepływu ścieków w kanale. W konsekwencji wystapily przeciwspadki do wartości $6,2 \%$ (rys. 2). Przedstawio-

Rys. 2 Profil kolektora od 1979 roku do okresu docelowego
ne na rysunku pomiary niwelacyjne obrazuja zmiany położenia dna kanału dla roku 1982, jak również zmiany przewidywane w ekspertyzie geologiczno-górniczej na rok 1990 i docelowo.
Problemy, które wystąpiły przy budowie i eksploatacji kolektora "X" związane są z brakiem szczegółowych norm i wytycznych do projektowania sieci kanalizacyjnej na terenach objętych szkodami górniczymi, jak również uzgodnien między resortem górnictwa i jednostkami wykonawczymi sieci kanalizacyjnych. Dotychczas bowiem stosunkowo dobrze zostały rozwiązane tylko problemy dotyczące zabezpieczeń sieci przed wpływem pełzania gruntu (polączenia elastyczne przewodów, dylatacje) oraz materiałów konstrukcyjnych o wymaganej wytrzymałości. Jedynym zabezpieczeniem kanałow przed wpływem ugięc pionowych terenu jest układanie ich z uwzględnieniem przewidywanych przeciwspadków. Ułożenie kanałów z tak zwiększonym spadkiem wiąże się z jego dużym zagłębieniem i koniecznością budowy przepompowni, co znacznie podwyższa koszty budowy i eksploatacji. Aby uniknạć nieuzasadnionego wzrostu kosztów i zabezpieczyć prawidłowa pracę sieci w całym okresie aż do ustalenia się wtórnego stanu równowagi w gruncie, należy w fazie projektowania dokładnie przeanalizować kolejne etapy powstawania niecki osiadań i przyjąć w wyniku tej analizy odpowiednie wielkości spadków kanału. Dno powstającej niecki osiadań przemieszcza się w miare wybierania pokładów weglowych (zmieniają się w czasie i przestrzeni parametry odkształceń $R_{\text {min }}$ i $E_{\text {max }}$). Stąd projektowanie sieci na podstawie ekspertyzy sporządzonej dla okresu docelowego (jak w przypadku omówionego kolektora "X") jest błędne i może prowadzić do powstawania przeciwspadków na poszczególnych odcinkach. Projekt powinien zatem być oparty na ekspertyzie geologiczno-górniczej uwzględniającej kolejne etapy powstawania niecki (w rocznych lub półrocznych odstępach czasowych w zależności od intensywności osiadań terenu).

Wnioski

1. Podstawą do projektowania i budowy sieci kanalizacyjnej na terenie czynnej eksploatacji górniczej powinna być zawsze ekspertyza geo-logiczno-górnicza, charakteryzująca obszar występowania odkształceń, ich wielkość, kolejnć́ć powstawania i rozprzestrzeniania się. Eksperiyza powinna zawierać izolinie osiadań wykonane w odstepach rocznych dla przewidywanej eksploatacji górniczej w ścisłym powiazaniu z planami wydobywczymi. Ekspertyza górnicza z izoliniami osiadań tylko dla okresu docelowego może okazać się niewystarczająca dla prawidłowego zaprojektowania sieci kanalizacyjnej.
2. Dla zapewnienia wiarygodności ekspertyzy geologiczno-górniczej, będącej podstawą do projektowania sieci kanalizacyjnej, konieczne jest przestrzeganie dyscypliny wydobywczo--eksploatacyjnej. Zmiany w planach wydobywczych powodować bedą dodatkowe problemy przy eksploałacji sieci (wzrost częstotliwości awarii, itp.).
3. Istniejace ogólne normy, wytyczne i zarządzenia dotyczace tego problemu wymagaja możliwie szybkiego uzupełnienia. Jednak opracowanie dokładnych norm dla projektowania i budowy sieci kanalizacyjnej na terenach eksploatacji górniczej, ze względu na złożoność problemu nie wydaje się możliwe.
4. Problemy związane z eksploatacja czynnych sieci zwracaja uwagę na konieczność indywidualnego traktowania każdego przypadku.

LITERATURA

1. M. SEREK: Wplyw szkód górniczych na warunki hydrauliczne sieci kanalizacyjnych i oczyszczalni ściekow. Konf. naukowo-techniczna nt. „Postęp techniczny w kanalizacji" - Wroclaw 1973, s. 70-92.
2. ITB - Wymagania techn.-budowl. dla obiektów budowlanych umieszczonych na terenach podlegających wpływom eksploatacji gorniczej. Warszawa 1975.
3. Norma PN-72/B-10727 - Kanalizacja. Przewody kanalizacyjne na terenach objetych szkodami górniczymi. Wymagania i badania przy odbiorze.
4. Zarzadzenie Komisji Planowania przy Radzie Ministrów z dnia 31 sierpnia 1981 r. Monitor Polski nr 23, 18 wrzesien 1981 r .
5. Uchwala Rady Ministrôw nr 11 z dnia 11.02 .1983 roku Monitor Polski nr 8 z 10 manca 1983 r.
6. W. BUDRYK, S. KNOTHE: Wytyczne dla układania rurociagow żeliwnych i stalowych na terenach eksploatacji górniczej (maszynopis).
7. M. GORCZYCA: Ceny sieci kanalizacyjnej na terenach górniczych w latach 1961-1967. GWiTS nr 8, 1969 r. s. 262-265.
8. F. WASILKOWSKI i inni: Ogolne wytyczne do projektowania i budowy rurociagow zeliwnych na terenach podlegajacych wplywom eksploatacji górniczej. Biuletyn PAN, 1956 r.
9. F. WASILKOWSKI: Ogolne wytycmie do projektowania kanalizacji na terenach podiegłych wpływom eksploatacji górniczej. Biuletyn PAN, 1956 r.
