TERMICZNO-CIŚNIENIOWA SYNEREZA BIOLOGICZNYCH OSADÓW ŚCIEKOWYCH

Najważniejszym problemem w gospodarce osadowej w oczyszczalniach ścieków jest usunięcie wody. Uzyskuje się to w różny sposób: np. przez zageszczanie grawitacyjne, zageszczanie flotacyjne, odwadnianie w warunkach naturalnych lub odwadnianie mechaniczne. Na ogół osady z oczyszczalni biologicznych nie moga być efektywnie odwadniane bez specjalnego przygotowania, tj. kondycjonowania. Jako środki kondycjonujące, najczęściej stosuje się sole żelaza i glinu, wodorotlenek wapnia oraz wielkocząsteczkowe związki organiczne, tzw. polielektrolity.
Stosowanie środków nieorganicznych obciąża osady substancjami mineralnymi, co z kolei może ujemnie wpływać na ich dalszą przeróbkę lub wykorzystanie. Jednocześnie wprowadza się do ścieków dodatkowe zanieczyszczenia, jak np. jony $\mathrm{SO}^{-}{ }_{4}, \mathrm{Cl}^{-}$.
Organiczne środki kondycjonujące - polielektrolity, praktycznie nie są w Polsce produkowane i z tego powodu ich stosowanie w kraju jest w najbliższej przyszłości mało realne. Są to zresztą bardzo kosztowne środki kondycjonujące.
Najbardziej „czystą" metodą przygotowania do ich odwadniania jest termiczno-ciśnieniowa synereza. W tym procesie kondycjonowania osadów ściekowych nie stosuje się żadnych chemikaliów. Czynnikiem kondycjonującym jest temperatura i ciśnienie. Termiczno-ciśnieniowej synerezie poddaje się osady typu organicznego, pochodzace z biologicznych oczyszczalni ścieków. Mogą to być osady z osadników wstępnych, wtórnych lub ich mieszaniny. Termicznej synerezie poddawać można zarówno osady surowe jak i przefermentowane.
Osady z oczyszczalni biologicznej składają się z materiału komórkowego, zawierajacego żel wewnątrzcząsteczkowy oraz zooglealny śluz zewnątrzkomórkowy. Są to głównie węglowodany i proteiny. Mechanizm działania termicznej synerezy polepszania właściwości filtracyjnych osadów ściekowych polega zdaniem Brooksa [2] na tym, że pod wpływem wysokiej temperatury (ok. $200^{\circ} \mathrm{C}$) komórki zostaja rozerwane i uwalnia się protoplazma. W dalszej kolejności protoplazma i śluz zooglealny ulegają rozkładowi termicznemu, dając ciemnobrązową ciecz, składającą się m.in. z rozpusz-
czalnych polipeptydów, azotu amonowego, lotnych kwasów thuszczowych i węglowodanów. Everett [3] twierdzi, że ciecz nadosadowa zawiera od 20 do 60% substancji organicznych i większości substancji azotowych wbudowanych w komórki bakteryjne.
Uwolnione w trakcie procesu cukry i aminokwasy reagują między soba dając żółto-brązowe barwniki, tzw. melanoidyny. Reakcja ta polega na łączeniu się wolnych grup korbonylowych cukrów z grupami aminowymi aminokwasów. Właśnie melanoidyny są, wg Frenzela i Sarferta [4], odpowiedzialne za intensywną brązową barwę cieczy nadosadowej.
Skład osadu czynnego wg Brooksa [2] jest następujaccy:

- weglowodany	$22,2^{\%} / 0$
- białka	$47,00 / 0$
- lipidy	$18,70 \%$
- kwasy nukleinowe	$7,7 \%$

Oprócz wymienionych wyżej, w roztworze zachodzą jeszcze inne reakcje, jak na przykład:

- tłuszcze i lipidy łatwo hydrolizuja, zarówno w środowisku kwaśnym, jak i w alkalicznym do glicerolu i kwasów tłuszczowych lub mydeł. W grupie lipidów złożonych spotyka się najczęściej fosfolipidy glicerynowe, w których pierwszą alkoholowa komponenta jest glicerol, zaś druga jest zróżnicowana. Może to być cholina, etanoloamina lub seryna. To związki wg Rotsidesa [1] można spotkać w cieczy nadosadowej;
- rozpuszczalne polipeptydy rozkładają się do wolnych aminokwasów, nasyconych i nienasyconych kwasów tłuszczowych, amoniaku i wody;
- polisacharydy ulegaja rozkładowi do wielocukrów o mniejszym ciężarze cząsteczkowym, a nawet do cukrów prostych; - kwasy nukleinowe DNA i RNA depolimeryzuja tworząc rozpuszczalne związki azotu i fosforu [2, 5].
Nierozpuszczalny materiał komórkowy zmienia radykalnie swą strukturę i łatwo oddaje wodę. Osady, po termicznej synerezie, łatwo sedymentuja, a ich opór właściwy filtracji zmniejsza się bardzo znacznie.

Hirst, Mülhall i Hermining [6] definiją termiczną przeróbkę osadów jako sposób nieodwracalnego zniszczenia żelowej struktury osadów, niezależnie od początkowych ich właściwości. W trakcie procesu synerezy zmniejsza się stopień hydratacji i powinowactwo wody do zawiesin, co znacznie polepsza procesy odwadniania. Everstt [7] wysuwa hipotezę, że polepszenie właściwości filtracyjnych osadów, po termicznej synerezie, polega na innym ukiadaniu sie obok siebie komórek mikroorganizmów przed i po procesie.

Komórki nie zniszczone (osady surowe) układają się ściśle obok siebie, co wpływa na wysoki opór właściwy filiracji tych osadów. Natomiast po termicznej synerezie zostaje zniszczona spoistość strukturalna i komórki, podczas filtracji, układaja się bezładnie, co tym samym powoduje zwiększenie się wydajności filtracji. Bardzo istotny jest także fakt, że osady po termicznej przeróbce są bardzo oporne na siły ścinania. Badania wykonane frzez Fishera i Swanwicka [8], jak również Oleszczyka [9] wykazały, że osady po termiczno-ciśnieniowym przygotowaniu mogą być nawet intensywnie mieszane bez niebezpieczeństwa pogorszenia właściwości filtracyjnych. Daje to omawianej metodzie kondycjonowania dużą przewagę nad metodami fizyczno-chemicznymi. Osady bowiem po kondycjonowaniu chemicznym na skutek mieszania i pompowania łatwo zatracają nabyte właściwości sedymentacyjne i filtracyjne [10].
Autorzy zajmujący się zagadnieniem termicz-no-ciśnieniowej synerezy maja dość różne zdania na temat wplywu temperatury i czasu reakcji na jakość cieczy nadosadowej oraz wartośc oporu właściwego filtracji. Wszyscy sa jednak zgodni co do tego, że po przekroczeniu pewnej granicy temperatur następuje radykalna zmiana struktury osadów i wzrasta ich zdolność do oddawania wody. Dla surowych osadów biologicznych temperatura ta wynosi ok. $190^{\circ} \mathrm{C}$, a dla osadów przefermentowanych ok. $180^{\circ} \mathrm{C}$ [7, 11, 12]. Fakt obniżenia temperatury krytycznej dla osadów po fermentacji jest zrozumiały, gdyż w procesie tym następuje już znaczne osłabienie ścianek komórkowych mikroorganizmów.
Badania Oleszczyka, przeprowadzone dla kilkudziesięciu różnych osadów biologicznych wykazały, że na skutek działania temperatury (powyżej $190^{\circ} \mathrm{C}$) osiąga się zadowalające efekty zmniejszenia oporu właściwego filtracji. Celem tych badań było określenie parametrów prowadzenia termicznej synerezy tak, aby uzyskać maksymalne obniżenie oporu właściwego filtracji, przy minimalnym możliwym do osiagnięcia obniżeniu cieczy nadosadowej. Badania przeprowadzono również dla osadów po oczyszczaniu ścieków na złożach biologicznych. Okazało się, że aby spełnić postawione warunki, należy proces prowadzić w możliwie najniższej temperaturze, przy możliwie najkrótszym czasie reakcji i możliwie najbardziej stężonej suchej masie w nadawie [13]. Potwierdzil to po-
średnio w swych badaniach również Roísides [3].
Bardzo istotne jest, aby osady przed procesem termicznej synerezy były maksymalnie zagęszczone, gdẏ̇̇ maleje wtedy bardzo wyraźnie zużycie energii cieplnej. Zmniejsza się również przy tym koszty oczyszczania cieczy nadosadowej, gdyż obciążenie tej cieczy nie jest proporcjonalne do stężenia suciej masy w nadawie. Obciazzenie cieczy nadosadowej na jednostkę suchej masy jest tym mniejsze, im wyższe jest stężenie suchej masy w osadach surowych. Wydaje sie, że wynika to z faktu przesunięcia równowagi reakcji w lewą stronę.
Powyżej została opisana metoda termiczno--ciśnieniowej synerezy osadów bez ich utleniania. Istnieją i są stosowane jeszcze następujące metody tego rodzaju kondycjonowania osadów ściekowych biologicznych:

- wysokociśnieniowe z pełnym utlenianiem związków organicznych
- niskociśnieniowe z częściowym utlenianiem związków organicznych.
Metody te nie sa jednak przedmiotem niniejszego artykułu. Termiczno-ciśnieniowe przygotowanie osadów do odwadniania prowadzi do otrzymania wysoko obciążonej cieczy nadosadowej. Ciecz ta nie może być odprowadzana do odbiornika i musi być przed tym oczyszczona.
Metody chemiczne oczyszczania tej cieczy prowadzą do znacznego obniżenia barwy lecz nie zmniejszają w stopniu zadowalającym wskaźników tlenowych [14].
Prowadzone były także próby odparowania cieczy nadosadowej, a następnie spalania pozostałości. Metoda ta okazała się jednak bardzo kosztowna.
Niepowodzenia, związane z chemicznym oczyszczaniem cieczy nadosadowej, a następnie dalszym jej unieszkodliwianiem poprzez odparowanie i spalanie, skłoniły badaczy do poszukiwań odpowiednich metod biologicznych. Lewin [15] stwierdził, że ciecz nadosadowa po termiczno-ciśnieniowej przeróbce jest podatna na oczyszczanie biologiczne, jednakże proces oczyszczania nie jest całkowity - ok. 30% substancji organicznych pozostaje nie rozłożonych [8]. Wg Everetta [14], po oczyszczaniu w odplywie pozostaje ok. $10-15 \%$ ChZT, co nadaje ściekom wysoka barwę. Kalbskopf [12] i Schlegel [16] stwierdzili, że korzystne jest wstępne oczyszczanie cieczy nadosadowej po termicznej synerezie w procesie fermentacji metanowej.
Znacznie więcej uwagi poświęcono jednak próbom oczyszczania cieczy po termiczno-ciśnieniowej przeróbce osadów metodami tlenowymi, tj. na złożach biologicznych lub osadem czynnym. W 1944 roku Lumb i Barnes [17] prowadzili badania oczyszczania cieczy na złożach zraszanych. W 1967 roku Berridge i Brenolish [14], a następnie w 1971 roku Hirst, Mülhall i Hermining [6] zastosowali złoża z wypełnieniem plastykowym.

W oczyszczalni ścieków w Pudsey ciecz nadosadową rozcieńczono ściekami tak, aby stanowiła ona ok. 4% całkowitej objętości ścieków. Taką mieszanine oczyszczano również na zzożach biologicznych. Uzyskano zmniejszenie BZT_{5} o $52^{0} \%$, a ChZT o 45% [3, 18]. Badania oczyszczania cieczy nadosadowej osadem czynnym prowadził Everett [14] oraz Corrie [19].
Oczyszczając ciecz nadosadową nierozcieńczona, można uzyskać wg Everetta zmniejzzenie wartósci ChZT o 85\% [14]. Corrie natomiast w mieszaninie ściekóv z udziałern 14\% cieczy nadosadowej, przy przedłużonym czasie napowietrzania do $40-48$ godzin uzyskal $84,40 / 0$ ubytku ChZT.
Na podstawie tych badań zaproponowano zawracanie cieczy nadosadowej do osadnika wstępnego i dalsze wspólne jej oczyszczanie ze ściekami surowymi. Ze względów hydraulicznych było to łatwe, gdyż objętość cieczy nadosadowej nie przekracza $10 /$ ogólnej ilości ścieków w oczyszczalni i nie ma wplywu na wstẹpną sedymentacje [20, 21, 22]. Jednakże pomimo małej objętości, ciecz nadosadowa, zawracana do oczyszczalni niesie wraz z soba duży ładunek zanieczyszczeń organicznych i powoduje podwyższenie wskaźnika BZT_{5} - $7-15 \%$ [22, 23, 24] co, jak stwierdzono, nie wplywa jednak na wartość $B Z T T_{5}$ w ściekach oczyszczonych. Wpływa natomiast na wartość ChZT, który to wskaźnik wzrasta o ok. 10 $\mathrm{mg} / \mathrm{dm}^{3}$ [23].
Innym rozwiązaniem oczyszczania cieczy nadosadowej, po termicznej synerezie jest jej magazynowanie, a następnie podawanie do systemu oczyszczania, przy okresowych niedociążeniach oczyszczalni [25]. Natomiast, w oczyszczalniach przeciazzonych powinna być ona bezwzględnie unieszkodliwiana osobno lub należy oczyszczalnie te rozbudować [14].
Zestawienie wskaźników, określających jakość cieczy nadosadowej po termicznej synerezie osadów, pochodzących z różnych oczyszczalni przedstawiono za Komorowską [26] w tablicy 1.

Tablica 1
CHARAKTERYSTYKA FIZYCZNO-CHEMICZNA CIECZY NADOSADOWEJ PO TERMICZNO-CISNIENIOWEJ PRZEROBCE OSADOW SCIEKOWYCH (WG RÓZNYCH AUTOROW)

Oznaczenia $\mathrm{mg} / \mathrm{dm}^{3}$	Chzt	$\mathbf{B Z 7} 5$	Utleniat	$\mathrm{PO}_{4}{ }^{-3}$	\mathbf{N}_{og}	$\mathbf{N}_{\mathbf{N H}_{4}}$
Autor nose						
Gray A. C.	9000	4000		100		
Hirst G.	16000	7000	1800		500	
Corrie	18000	9000	1650	68		700
Brooks R. B.	$\begin{aligned} & 1800- \\ & -225000 \end{aligned}$					
Sherwood	8470	3800				
Kalbskopf K. H.	80000	15000	20000			
Sarfert	12500	10000	13000	85	1650	650
Lumb		4620	2610			830

Natomiast wskaźniki tlenowe, charak'eryzujące ciecz nadosadowa, po termicznej syntezie wg badań przeprowadzonych przez Oleszczyka, dla różnych osadów z oczyszczalni ścieków przemysłowych w Polsce przedstawiono w tablicy 2.

WSKAZNIKI TLENOWE CIECZY NADOSADOWEJ PO TERMICZNOCISNIENIOWEJ PRZEROBCE OSADOW SCIEKOWYCH
(WG OLESZCZYKA)

Nazwa zakladu	Uilenialność	ChZT	BZT_{5}
	$\mathbf{w} \mathbf{m g ~} \mathrm{O}_{2} / \mathbf{d m}^{\mathbf{3}}$		
Zaklady Piwowarskie ,Okocim'	9700	34000	13200
Z.T.Szt. ,"Pustków"	7200	11400	6300
2.C.P "Ostrofęka"	3800	9800	5400
G.O.S. w Pruszkowie	3560~5560	8600-28800	5000-8000
Z.Ch. "Sarzyna"	4800	11200	5400

Z przedstawionych w wymienionych tablicach danych widać wyraźnie, że jakość cieczy jest bardzo różna. Obciążenia cieczy zależą od charakteru osadów, poddawanych termicznej synerezie, od parametrów prowadzenia procesu oraz częściowo od początkowego stężenia osadow surowych. Jednak wszyscy autorzy zgodnie stwierdzaja, że ciecz nadosadowa jest bardzo silnie obciążona i stwarza znaczne trudności przy prowadzeniu prawidłowej pracy oczyszczalni.

LITERATURA

1. CH. ROTSIDES: Badania nad termiczno-ciśnieniowa synteza osadów organicznych. Praca doktorska, Wydzial Inżynierii Sanitarnej Politechniki Sląskiej. Gliwnice 1973.
2. R. B. BROOKS: Heat treatment of activated sludge. Water Pollution Control 67 (1968), 592.
3. J. G. EVERETT: Thermal conditioning of wastewater sludge. Prace naulowe Instytutu Inżynierii Ochrony Srodowiska Politechniki Wrocławskiej nr 2 (1973), 131.
4. H. J. FRENZEL, F. SARFERT: Untersuchungen über die Natur einiger in „Filtraten" thermisch konditionierter Klärschlämme enthaltenen Stoffe. GWF 114 (1973), 330.
5. R. B. BROOKS: Heat treatment of sewage sludge. Water Pollution Control 69 (1970), 221.
6. M. L. HERMINING, G. HIRST, K. G. Mülhall: The sludge heat treatment and pressing plant at Pudsey. Design and limited operating experiences. Water Pollution Control 71 (1972), 455.
7. J. G. EVERTT: Wewatering of wastewater sludge by heat treatment. J. Water Pollution Control 44 (1972) 93.
8. W. J. FISHER, J. D. SWANWICK: High temperature treatment of sewage sludges. Water Pollution Control 70, (1971), 355.
9. A. OLESZCZYK: Termiczno-ciśnieniowe kondycjonowanie osadów ściekowych z oczyszczalni ścieków Z.Ch. ,Elana" w Toruniu. B.P. Biprowod Warszawa (1975). Praca nie publikowana.
10. E. ZINGLER: Beitrag zur Verfahrenstechnik der Druskfiltration. Osterr Abwasser-Rundschau 16: 1 (1971) nr 1.
11. R. B. BROOKS: Heat treatment of sewage. Water Pollution Control 69 (1970), 92.
12. K. H. KALBSKOPF: Thermal conditioning tests of the filtrates. Water Pollution Research 6 (1972), 517.
13. A. OLESZCZYK: Parametry prowadzenia procesu termiczno-ciśnieniowego kondycjonowania osadów ściekowych. Materiały na Konferencje NaukowoTechniczna „Postęp w dziedzinie oczyszczania ścieków" (1975). Katowice.
14. C. G. GOLUCKE: Temperature Effects on Anaerobic Digestion of Raw Sewage Sludge. Sew. Ind. Wastes 30 (1958). 1225.
15. V. H. LEWIN: Sewage sludge dewatering. Water Waste Treatment 5/6 (1966), 29.
16. C. S. SCHLEGEL: Die anaerobe Behandlung von Filtratwasser thermisch konditionierter Schlämme GWF Wasser/Abwasser 116 (1975), 29.
17. C. LUMB: treatment as an aid tu sludge dewatering. Ten years full scale operation. J. and Proc. Institute of Sewage Purification 1,5, (1951).
18. CH. ROTSIDES: Nowe doświadczenia nad termiczną przeróba osadów ściekowych. GWTS 46 (1972), 394.
19. K. D. CORRIE: Use of activated carbon in the treatment of heat treatment plant liquor. Water Pollution Control 71 (1972), 629.
20. J. R. MCDONALD, V. M. DEGER, R. M. BELLINS: Wet air oxidation of sludge at Hockford Sewage Works. Effl. Wat. Treatment J. 14, (1974), 13.
21. F. SARFERT: Composition of the filtrate from thermally conditioned sludges. Water Research 6 (1972), 521.
22. Termiczne kondycjonowanie osadów ściekowych. Prospekt reklamowy firmy Techfina.
23. A. C. GREAY, H. B. GERBER, P. E. PAUL: Activated sludge process with alum addition and heat treatment. J. Wat. Poll. Controll Fed. 48 (1976), 163.
24. R. SHERWOOD, J. PHILIPS: Heat treatment proceses improves economis of sludge handling. Wat. and Wastes Engrg. 11 (1970), 42.
25. J. JOSTI: Wastewater plant will use no chemicals for sludge conditioning. Wat. and Sew. Whs. 123 (1976), 66.
26. B. KOMOROWSKA: Badania nad procesem biodegradacji metoda osadu czynnego cieczy nadosadowej, po termiczno-ciśnieniowej przeróbce osadów ściekowych. Praca doktorska. Warszawa (1978).
