3. AE. GREENBERG \& E. KUPKA: Tubercuiosis Transmission by Waste Water - A review. Sew. Ind. Wastes. 29,524, 1957.
4. GA. HALL \& P. W. JONES: I. Hyg., Camb. 80, 409-414, 1978.
5. I.A. HUDSON: Dispiosal of Sewage Sludge to Land: chemical and mikrobiological aspects of sludge to land policy. Water Pollution Control. vol. 79, No $3,1980$.
6. E.P. LARKIN, I.T. TIERNAY \& R. SULLIVAN: Persistance of Virus on Sewage - Irrigated Vegetables. I. Environ. Eng. Div.,ASCE. 102, 29-35, 1976.
7. PAHREN, R. HERBERT: An appraisal of the relative heath risks associated with land application of municipal sludge. Presented at the 50 -th Annual Conference of the Water Pollution Control Federation. Philadelphia, PA., October 2-6, 1977.
8. RUDOLFS, WILLEM, L. FALK, and ROBERT A. RAGOTZKIE: Contamination of vegetables grown in polluted soil. Sewage Ind. Wastes. 23, 253-268, 1951.
9. RUDOLFS, WILLEM, L. FALK, and ROBERT A. RAGOTZKIE: Contamination of vegetables grown in polluted soil: VI. Application of results. Sewage Ind. Wastes. 23, 992-100, 1951.
10. TIERNAY, I.T., R. SULLIVAN \& E.P. LARKIN: Persistance of Polio Virus I in Soil and Vegetables Grown in Soil Previously Flooded with Inoculated Sewage Sludge or Effluent Appl. Environ. Microbials. 33, 109-113, 1977.
11. Working Group on Sewage Sludge to Land: Public Health Implication of Microbial Content. Stevenage United Kingtom, 6--9, January 1981 (matenialy dla WHO, nie publikowane).

ZASTOSOWANIE FERMENTACII METANOWEJ DO OCZYSZCZANIA ŚCIEKÓW PRZEMYStOWYCH

Abstract

W niniejszej pracy omówiono wyniki badań zastosowania procesu fermentacji metanowej przy oczyszczaniu ścieków wysoko obciqżonych zanieczyszczeniami typu organicznego. 1)

W projektowanych i realizowanych oczyszczalniach ścieków dość czésto znajduja zastosowanie komory do fermentacji beztlenowej. Sq one jednak zwykle usytuowane w gospodarce osadowej oczyszczalni. Fermentacja metanowa pozwala bowiem na stabilizację osadów ściekowych, zmianee ich struktury i częsciowe zmniejszenie objętości. Jako substraty użyto dwa rodzaje ścieków:

- ciecz nadosadowa po termicznej synerezie osadów biologicznych nadmiernych
- ścieki po zdrożdżowaniu wywaru z gorzelni.

Zastosowanie termicznej synerezy w przeróbce osadów ściekowych powoduje wzrost obciqżenia oczyszczalni, z której pochodza, ładunkiem organicznym o 12- 15%. W istniejqcych oczyszczalniach ścieków czesto pociqga to za soba bardzo kosztowna rozbudowę czę́ści biologicznej. W nowo projektowanych obiektach również rosna koszty zwiqzane z koniecznościq powiększenia części biologicznej. Podobny problem występuje przy innych rodzajach ścieków z dużq zawartościq substancji organicznych. Ścieki te najczęściej oczyszcza się według ogólnie znanych tlenowych me-

[^0]tod biologicznych. Rzadziej stosuje się — choć jest to przeważnie bardziej ekonomiczne - system dwustopniowego oczyszczania takich ścieków. W systemie tym I° stanowi fermentacja metanowa, a $I I^{\circ}$ - osad czynny lub złoża biologiczne. W wyniku oczyszczania ścieków metodami tlenowymi powstajq znaczne ilości kłopotliwych osadów ($40-70 \%$ usuniętego ładunku zanieczyszczeń), zaś podczas fermentacji metanowej ilości powstałych osadów nie przekraczaja 5% usuniętego ladunku organicznego. Glównym produktem fermentacji metanowej jest wysokokaloryczny gaz fermentacyjny co ma określone znaczenie podczas obserwowanego kryzysu energetycznego.
Beztlenowy rozkład substancji organicznych znajdujacych się w ściekach polega na hydrolizie duzych czqstek organicznych do kwasów tluszczowych, a nastẹpnie ich zgazowaniu. Przeksztakceń dużych czastek substancji organicznych w pólprodukty, podlegajqce zgazowaniu dokonuja bakterie heterotroficzne określane ,,kwasotwórcze". Sq to na ogól bakterie fakultatywne. Sq one mniej wrażliwe na zmiany odczynu pH i temperatury, a ich czas generacji wynosi od kilku do kilkunastu godzin.
Bakterie metanowe sq arganizmami ściśle beztlenowymi. Sq one specyficzne dla produktów
i pókproduktów, które mogq rozkladać. Każdy gatunek może fermentować tylko względnie ograniczona grupę prostych zwiqzków organicznych do metanu. Stad do calkowitej stabilizacji beztlenowej określonych ścieków potrzeba również okreslonych gatunków bakterii, wytwarzajacych metan. Specyficzność bakterii metanowych względem substratów można dobrze zilustrować przykładem pełnego przefermentowania kwasu walerianowego, do którego potrzebne sq̣aż trzy różne gatunki bakterii metanowych. Każdy z kwasów organicznych o dłuższych lańcuchach będzie rozkładany bakteryjnie do kwasu maslowego lub propionowego, a następnie octowego i metanu. Dwie glówne drogi powstawania metanu -- to biologiczny rozkład kwasu octowego i redukcja bakteryjna dwutlenku wegla:
\[

$$
\begin{align*}
& \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{4}+\mathrm{CO}_{2} \tag{1}\\
& \mathrm{CO}_{2}+8 \mathrm{H} \rightarrow \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \tag{2}
\end{align*}
$$
\]

Natomiast np. kwas propionowy podlega dwustopniowej degradacji bakteryjnej:
r° :

$$
\begin{gather*}
4 \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \\
\rightarrow 4 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CO}_{2}+3 \mathrm{CH}_{4} \tag{3}
\end{gather*}
$$

11° :

$$
\begin{equation*}
4 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow 4 \mathrm{CH}_{4}+4 \mathrm{CO}_{2} \tag{4}
\end{equation*}
$$

Bakterie metanowe jako ścisle beztlenowce sq bardzo wrażliwe na zmiany odczynu pH i temperatury. Sq one najbardziej aktywne w dwóch zakresach temperatur:

- w zakresie mezofilowym $30-35^{\circ} \mathrm{C}$.
- w zakresie termofilowym $50-60^{\circ} \mathrm{C}$.

Optymalny zakres pH dla bakterii metanowych wynosi $6,4-7,2$. Bakterie metanowe maja wzglednie długie czasy generacji w granicach od nieco mniej niż 2 dni, do powyżej 20 dni . Fakt ten ma duże znaczenie praktyczne, gdyż oczywiste jest, że nie można obniżyć czasu retencji w komorach fermentacyjnych poniżej czasu generacji, albo też trzeba stosować recyrkulację bakterii metanowych.

Substraty do badań

a) Ciecz nadosadowa po termicznej synerezie osadów biologicznych nadmiernych z oczyszczalni ścieków rafineryjnych i petrochemicznych:
Ścieki te powstawaly w wyniku kandycjonowania zagesszczonych osadów biologicznych nadmiernych w autoklawie laboratoryjnym. Stosowano: ciśnienie ok. 1470 kPa (15 at), temperature 185$190^{\circ} \mathrm{C}$ i czas zatrzymania 30 min . Po kondycjonowaniu i sedymentacji zdekantowana ciecz zbierano z kolejnych prób razem i przechowywano w chłodni w temperaturze ok. $0^{\circ} \mathrm{C}$. Charakterystykę kolejnych porcji surowej cieczy nadosadowej po termicznej synerezie przedstawiono w tabeli 1. b) Ścieki po zdrożdżowaniu wywaru z gorzelni w Raciborzu:

Tabela 1

CHARAKTERYSTYKA CIECZY NADOSADOWEJ PO TERMICZNEJ SYNEREZIE NADMIERNYCH OSADÓW BIOLOGICZNYCH

Oznaczenia	Jednosika				$\begin{aligned} & 0 \\ & \frac{9}{0} \frac{0}{E} \\ & \frac{0}{6} \\ & \frac{0}{0} \\ & \geq \frac{2}{3} \end{aligned}$
Odezyn	pH	7,1	7,2	7,2	7,2
BZT_{5}	mg $\mathrm{O}_{2} / \mathrm{dm}^{3}$	6390	7930	8740	9250
ChZT	"	9×26.3	11830	75297	$\because: 7 * 0$
Sucha pozostalość	$\mathrm{mg} / \mathrm{dm}^{3}$	10760	97.0	12150	$\bigcirc 210$
Porostalość po prax́eniu	"	3150	1123	1970	1410
Substancje lotne	\%/s. masy	9	88	25	26
Lotne kwasy tluszezowe	$\begin{gathered} \mathrm{mg} \mathrm{CH}_{3} \\ \mathrm{COOH} / \mathrm{dm}^{2} \end{gathered}$	6.9	743	242	350

Ścieki do badań pobierano bezpośrednio z wirówek, oddzielajacych mleko drożdżowe w kolejnych trzech dniach produkcyjnych Zakladu. Do badań fermentacji stosowano ścieki uśrednione. Charakterystykee poszczególnych próbek ścieków przedstawiono w tabeli 2.

CHARAKTERYSTYKA	SCIEKƠW PO ZDROŻDZZOWANIU Z GORZELNI				Tabela 2 WYWARU
Oznaczenia	Jednostika	$\begin{aligned} & 0 \\ & \frac{\pi}{2} \\ & 9 \\ & 2 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { E } \\ & \frac{0}{0} \\ & \hline 0 \\ & \text { 믐 } \\ & \equiv \end{aligned}$	
Odczyn	pH	4,6	4,7	2.7	-
BZT_{5}	$\mathrm{mg} \mathrm{O}_{2} / \mathrm{dm}^{3}$	22000	13303	17000	17400
Chzt	,	26400	14803	22303	21295
Siarczany	$\underset{/ \mathrm{dm}^{3}}{\mathrm{mg} \mathrm{SO}_{4} /}$	11400	2000	E0e0	9100
Sucha pozostalość	$\mathrm{mg} / \mathrm{dm}^{3}$	45300	35703	38200	40000
Porostalode po praieniu	''	20300	15603	15803	17230
Substancje lotne	\% s. masy	55	59	58	57
Lotne kwasy thuszczowe	$\underset{\substack{\mathrm{COOH} \\ / \mathrm{dm}^{3}}}{\mathrm{mgCH}_{3}}$	1130	1300	300	1100

Na podstawie przedstawionych wyników analiz próbek poszczególnych ścieków można stwierdzić, że zarówno ciecz nadosadowa po termicznej synerezie, jak też ścieki po zdrożdżowaniu wywaru z gorzelni sq bardzo silnie obciqżone zwiqzkami organicznymi, a ścieki z gorzelni także zwiazkami mineralnymi (szczególnie wysokie sq stężenia siarczanów).
Porównujac oba te rodzaje ścieków można stwierdzić, że stosunek ChZT do $\mathrm{BZT}_{5} \mathrm{w}$ ściekach po synerezie osadów jest bliski wartości 2 , a w ściekach z gorzelni bliski wartości 1. Ścieki z gorzelni powinny się zatem latwiej oczyszczać biologicznie.

Metodyka badawcza i aparatura

Jako komory fermentacyjne zastosowano butle szklane z dolnym tubusem o pojemności $5 \mathrm{dm}^{3}$. Calkowita objętość każdej butli była dokładnie cechowana. Dolny tubus wykorzystywano do dozowania świeżych ścieków i pobierania próbek ścieków przefermentowanych. Badania prowadzono według metodyki opracowanej przez Chmielowskiego [1].
Gaz, powstajqcy w trakcie fermentacji zbieral się w komorze, zmieniajqc panujace w niej ciśnienie. Rolę zaworów gazowych pełnily membrany z mię-
sistej gumy umocowane w specjalnych uchwytach w górnych otworach butli. Membrany te umożliwialy pomiar ciśnienia, wytwarzanego gazu fermentacyjnego oraz redukcję ciśnienia do atmosferycznego. Ciśnienia mierzono przy użyciu igieł injekcyjnych polaczonych z manometrem różnicowym. Membrany te nawet po kilkudziesięciu ukłuciach wytrzymywaly ciśnienia do ok. 1500 hP . Zawartość komór była mieszana 2 razy na dobę. Raz na dobę z komór fermentacji pobierano próbki ścieków do analiz oraz dozowano odpowiedniq objętość (zgodnq z zalożonym czasem retencji) ścieków surowych. Do tego celu slużyla strzykawka lekarska o poj. $200 \mathrm{~cm}^{3}$
Butle umieszczone byly w termostacie w temperaturze $32 \pm 3^{\circ} \mathrm{C}$. Jak już wspomniano, ilości wytwarzanego gazu mierzono przez pomiar ciśnienia w komorze. Przy stałej i znanej objętości p̄rzestrzeni gazowej w komorze, stalej temperaturze prowadzenia procesu i objętości masy fermentujqcej można obliczyć, na podstawie pomiarów zmian ciśnienia gazu w komorze, objętości wytwarzanego gazu w jednostce czasu. Obliczenia przyjęto jak dla gazów doskonalych, co w warunkach niniejszego doświadczenia nie powodowalo większych blędów.
Badania prowadzono metoda ciqgla przy 100% poczatkowym zaszczepieniu komór osadem technicznie przefermentowanym. W konkretnym przypadku byly to osady z komory fermentacyjnej ścieków z drożdżowni.

Przebieg i wyniki badań

a) Ciecz nadosadowa po termicznej synerezie: Próby fermentacji prowadzono w komorach laboratoryjnych przy założonych następujacych czasach retencji: 6, 7 dnia, $10 \mathrm{dni}, 13 \mathrm{dni}, 20 \mathrm{dni}$ i to w dwóch równoleglych komorach. Miało to na celu porównywanie wyników z analogicznych komór oraz zapewniało ciagłość badań w przypadku uszkodzenia jednej z nich.
Analizy kontrolne ścieków po fermentacji wykonywano dopiero po co najmniej.trzykrotnej wymianie całej pojemności roboczej komór. Wyniki analiz cieczy nadosadowej po fermentacji przedstawiono w tabeli 3 . Na ich podstawie można stwierdzić, ze przy wszystkich przebadanych czasach retencji fermentacja metanowa pozwoliła na znaczne usunięcie ładunku zanieczyszczeń. Dla

Tablica 3 CHARAKTERTSTYIG PRZEFERMENTOWANE CIECZY NADOSADOWE
PO TERMICZNES SYNEREIE OSADOW BIOLOGICZNYCH PO TERMICZNES SYNEREZIE OSADOW BIOLOGICZNYCH

Omacranla	Jednostka	$\begin{aligned} & \text { Do } \\ & 0 \\ & \text { 镸 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { o } \\ & 0 \\ & \text { 열 } \\ & \hline \end{aligned}$	\square 0 E O \geq
Cres retenejl	doby	6,7	10	13	20
Odexy	pH	7,3	7,2	7,2	7,2
Bxts	$\mathrm{mg} \mathrm{O}_{2} / \mathrm{dm}^{3}$	2900	1500	1050	910
Chzt	:	0400	4600	3800	3400
Usunigete Bzts	\%	63	80	86	87
Usunlecte Chet	\%	54	ds	72	75
Produtela gerv	dmang usunietych cial lotnych	850	∞	710	710

tej serii badań za optymalny należy uznać 10dniowy czas retencji.
Jednak pomimo bardzo dużego obniżenia stężeń zwiqzków organicznych, ścieki oczyszczone sq jeszcze silnie zanieczyszczone. Dlatego fermentacja metanowa przy oczyszczaniu cieczy po termicznej synerezie może być tylko pierwszym stopniem oczyszczania. Niewatpliwa zaleta tego procesu jest produkcja dużych ilości energetycznie cennego gazu fermentacyjnego.
b) Ścieki po zdrożdżowaniu wywaru z gorzelni:

Próby fermentacji metanowej tych ścieków prowadzono w sposób analogiczny. Założono następujące czasy retencji: 6,7 dni, 10 dni i 15 dni. Wyniki analiz ścieków przefermentowanych przedstawiono w tabeli 4. Ścieki z gorzelni bardzo latwo podlegaly fermentacji metanowej. Optymalny czas retencji wynosił 6,7 doby. Przy takim czasie wskaźnik BZT_{5} zmniejszał się o ok. 90% a ChZT - 65%. W tym przypadku wyniki sq lepsze, niż przy fermentacji cieczy nadosadowej po termicznej synerezie.

Oznaczenia	Jednostha	$\begin{aligned} & \text { g } \\ & \text { ot } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 몽 } \\ & \text { E } \\ & \text { = } \\ & = \end{aligned}$	$\begin{aligned} & \text { 틍 } \\ & \text { E } \\ & \text { 영 } \\ & \equiv \end{aligned}$
Casas retenell	doby	6,7	10	15
Odezy	pH	7,2	7,3	7,2
Bzts	$\mathrm{mgO}_{2} / \mathrm{dm}^{\text {d }}$	1500	950	900
Ch27	\%	7500	6000	5000
Usunigele BZTs	\%	91	94	95
Usuniacie Chzt	"	65	72	76
Produkeja gaxu	$\mathrm{dm}^{\mathbf{8}} / \mathrm{kg}$ usunietych cial lotav:h	680	680	730

Nalė̇y tutaj podkreślić, że w obu przypadkach nie prowadzono recyrkulacji osadów, odprowadzanych z przefermentowanymi ściekami. Skrócenie czasu retencji poniżej 7 dni jest możliwe tylko. przy zastosowaniu recyrkulacji osadów, poniewaz z uwagi na dlugi czas generacji bakterii metanowych, ich usuwanie z układu jest szybsze niż ich przyrost.
Obecnie autor prowadzi badania nad fermentacjq metanowa mezofilowa ścieków wysokoobciqżonych z recyrkulacja osadu. Nie sa one zakończone lecz już wstępne wyniki upoważniajq do stwierdzenia, iż skrócenie czasu retencji przez recyrkulację będzie możliwe. Odnosi się to szczególnie do ścieków z przemysłu spożywczego.
W wyniku fermentacji metanowej uzyskuje się oprócz znacznego zmniejszenia ładunku zanieczyszczeń w ściekach - gaz fermentacyjny. Przedstawione w tabelach 3 i 4 ilości gazu sq niższe, niż podawane przez innych autorów. Róźnice te wynikaja zapewne stad, że oznaczane, jako części lotne, substancje organiczne sq powiekkszone o mineralne części lotne (np. o węglany), które jak wiadomo nie fermentuja.
Uzyskiwany w doświadczeniach gaz fermentacyjny zawieral ok. 70% metanu; resztę stanowil dwutlenek wegla oraz inne domieszki takie, jak wodór, siarkowodór. Szczególnie dużo siarkowodoru
znajdowalo się w gazie po fermentacji ścieków z gorzelni. Wynikało to z dużego stężenia siarczanów w tych ściekach. (Zwiqzane jest to z faktem wzbogacania wywaru przed zdrożdżowaniem zwiqzkami azotu w postaci siarczanu amonu. Siarczany, a zatem i. siarkowodór można wyeliminować przez zastosowanie innych zwiqzków azotu, np. azotanu amonowego).

Omówienie wyników

Fermentacja metanowa w oczyszczaniu ścieków jest jak dotychczas mimo jej oczywistych zalet rzadko stosowana w Polsce. Podczas fermentacji powstaje wysokokaloryczny gaz fermentacyjny, którego wartość opalowa, przy racjonalnym zagospodarowaniu, znacznie przekracza ilości ciepła zużywanego na utrzymanie odpowiedniej temperatury w komorach. W wyniku fermentacji powstaja znikome w stosunku do metod tlenowych, ilości osadów, które nie maja większego wpływu na i tak kosztowna i kłopotliwa gospodarke osadowa oczyszczalni.
Przedstawione tu wyniki dotyczq fermentacji cieczy po termicznej synerezie oraz wywaru po zdrożdżowaniu. Ścieki te różniq się znacznie składem chemicznym. Pomimo tych różnic uzyskane efekty oczyszczania, a szczególnie skład gazu fermentacyjnego i jego ilości, z jednostki usuniętych części lotnych, sq zblizzone. Fermentacja metanowa może być zatem z powodzeniem stosowana do ścieków wysokoobciqżonych substancjami organicznymi lecz biologicznie rozkładalnymi, takimi jak: weglowodany, tluszcze, alkohole, estry, bialka, sole kwasów organicznych itp., bez względu na źródła ich powstawania.
Efekty uzyskane przy oczyszczaniu cieczy nadosadowej po termicznej synerezie w komorach fermentacji sq zbliżone do podawanych przez innych autorów. Kalbskopf [2] uzyskal. w badaniach póltechnicznych zmniejszenie BZT_{5} ○ ok. 70%, przy 10 -dniowym czasie retencii, a produkcja gazu wynosiła ok. $600 \mathrm{dm}^{3} / \mathrm{kg}$ cial lotnych. Podobnie zgodne sq wyniki uzyskane podczas badań fermentacji metanowej ścieków z gorzelni prowadzonych przez Tomczyńska [3]. Przykladowo średniej wielkości gorzelnia odprowadza w ciqgu doby ok. $350 \mathrm{~m}^{3}$ ścieków o ladunku ChZT wynoszacym ok. 10 Mg . Zakładajac, że z 1 kg usuniętego ładunku ChZT powstaje $600 \mathrm{Ndm}^{3}$ gazu, jego ilość wyniesie $6000 \mathrm{Nm}^{3} / \mathrm{d}$ o wartości opałowej 5000 $6000 \mathrm{kcal} / \mathrm{Nm}^{3}$.
Podobnie jak gorzelniane, również ścieki z innych gałęzi przemyslu spożywczego sa podaine na fermentacje metanowa. Moga to być ścieki z produkcji drożdży konsumpcyjnych, kwasu cytrynowego, stęzone z zakładów miessnych, gnojowica i inne. Istnieje moz̀liwość szybkiego zastosowania tej
metody podczyszczania ścieków w oparciu o krajowe konstrukcje wydzielonych komór fermentacyjnych, jakie używane sq do fermentacji osadów ściekowych.
Na ogó ${ }^{\text {scicieki po fermentacji nie mogq być bez- }}$ pośrednio odprowadzane do odbiornika lecz powinny być oczyszczane metodami tlenowymi. Połaczenie beztlenowej fermentacji metanowej z biologicznymi metodami tlenowymi może prowadzić do znacznej obniżki kosztów inwestycyjnych i eksploatacyjnych oczyszczania. Jeszcze raz wypada podkreślić, że poza efektywnym oczyszczaniem ścieków uzyskuje się odzysk energii w postaci gazu fermentacyjnego. Dlatego przy wyborze i podejmowaniu decyzji odnośnie metod oczyszczania ścieków silnie obciqżonych substancjami organicznymi winna być przeprowadzona szeroka i szczegółowa analiza techniczno-ekonomiczna.

Wnioski

1. Ścieki wysoko obciqżone zwiqzkami organicznymi biologicznie rozkladalnymi mogą być bardzo efektywnie oczyszczane przy zastosowaniu systemu dwustopniowego, w którym ${ }^{\circ}$ stanowi fermentacja metanowa. Przy fermentacji metanowej ilości powstajacych osadów ściekowych w stosunku do metod tlenowych sq znikome.
2. Przy oczyszczaniu tych samych ścieków konwencjonalnymi metodami tlenowymi nie tylko traci się bezpowrotnie energię w nich zawartq ale jeszcze dodatkowo zużywa jej znaczne ilości na wprowadzenie tlenu do ścieków. Wytworzony w trakcie fermentacji gaz pokrywa zapotrzebowanie na podgrzewanie komór fermentacyjnych. Na ten cel zużywa się tylko ok. 25% wytworzonego gazu. Pozostaly gaz może być dowolnie wykorzystany jako źród to energii cieplnej.
3. Czas retencji w komorach fermentacji bez recyrkulacji wynosi 7-10 dni. Może on być krótszy pod warunkiem utrzymywania stalego odpowiednio wysokiego stężenia bakterii metanowych (osadów) w komorze. W tym celu musi być stosowana recyrkulacja osadów.

LITERATURA

1. J. CHMIELOWSKI: Kinetyka i mechanizm fermentacji metanowej. Zeszyt Naukowy Politechniki Sląskiej Gliwice, 1966.
2. K.M. KALBSKOPF: Thermal conditioning tests of activated sludge and anaerobic digestion tests of the filturates. Wat. Research 6: 517 (1972).
3. J. TOMCZZYNSKA: Charakterystyka i unieszkodliwianie odcieków po zdmożdżowaniu wywaru z dodatkiem melasy. Instytut Przemysłu Fermentacyjnego. Praca nie publikowana 1970.

[^0]: 1) Badanla wykonano w laboratorium B.P. Blprowod, Warszawa. Autor dzlekuje Biuru za udostępnienie laboratorlum do omawianych badań.
