# O POTRZEBIE I MOŻLIWOŚCIACH POPRAWY MIKROKLIMATU WNĘTRZ W NOWOWZNOSZONYCH BUDYNKACH MIESZKALNYCH 


#### Abstract

Wykazano potrzeby, możliwosci oraz ekonomicznie i społecznie uzasadnionq celowość poprawy mikroklimatu $w$ nowowznoszonych budynkach mieszkalnych. Przedstawiono gtówna ideę i koncepcję proponowanego do stosowania systemu rozwiqzania, który poza poprawa mikroklimatu przynieść powinien także oszczędności m. in. $w$ zużyciu ciepła na cele ogrzewcze.


Zawodowo czynny czlowiek spędza średnio dziennie 10 do 14 godzin z okresu regeneracji w swym mieszkaniu. Starcy i dzieci przebywajq w domu znacznie większq liczbe godzin w ciagu doby. Aspekt spoleczny przemawia więc za utrzymaniem najbardziej dogodnego mikroklimatu wnętrz mieszkalnych. Sprzyja to bowiem podniesieniu stanu zdrowotnego ludności i powoduje zwiększenie wydajności na stanowisku pracy, w wyniku dobrej regeneracji organizmu.
Tymczasem mikroklimat $w$ nowowzniesionych budynkach mieszkalnych uznać trzeba za daleko odbiegajacy od komfortowego. A w historii ludzkości rozwój zawsze laczył się ściśle z warunkami klimatycznymi. Wszystkie starożytne ośrodki cywizacji rozmieszczaly się wokól izotermy średniej rocznej $+21^{\circ} \mathrm{C}$, a dopiero wykorzystanie ognia i palenisk do ogrzewania pomieszczeń (a więc do stwarzania bardziej dogodnego mikroklimatu) pozwoliło na oddalenie się od tej izotermy w kierunku niższych temperatur. Wspólcześnie najwyższy poziom cywilizacji istnieje na obszarach o średnich temperaturach miesiqca najcieplejszego, nie wyższych niż $+21,5^{\circ} \mathrm{C}$ i najchlodniejszego nie niższych niż $-2,0^{\circ} \mathrm{C}$. Wyjatek stanowiq tu USA i Kanada, gdzie uzależnienie od wahań temperatury jest znacznie mniejsze, w wyniku intensywnego rozwoju budownictwa mieszkań klimatyzowanych.
Na rys. 1 przedstawiono za Zb. Jethonen [1] interesujacy wykres zależności rozmieszczenia populacji ludzkiej od średniej rocznej temperatury w miejscu zamieszkania, opracowany przez Markhama.

Możliwość przystosowania się organizmu człowieka do wyraźnie odmiennych warunków klimatycznych jest bardzo utrudniona. Jednym z głównych kryteriów biologicznej adaptacji populacji naplywowej jest zdolność reprodukcji. Niskie temperatury w strefach arktycznej i antarktycznej, a także wysokie partie gór (powyżej 5000 m ) nie

pozwalaja - jak dotychczas - na stale przebywanie tam czlowieka. Trudności z przystosowaniem się do dużych wysokości poznali szczególnie dobrze już kolonizatorzy hiszpańscy w Andach, gdy zalożywszy ośrodek administracyjny na wysokości 3300 m npm (w miejscowości Jauja) musieli prze 53 lata czekać na urodzenie się pierwszego dziecka w rodzinie kolonizatorów.

Wspólcześnie pojęcie mikroklimatu, rozumianego jako klimatu wnętrz, a także klimatyzacji komfortu, ma o wiele szersze znaczenie niż przed wielu laty. Dzisiaj zadaniem klimatyzacji komfortu jest ochrona człowieka przed prawie wszelkimi nieprzyjemnymi i uciażliwymi wplywami otoczenia zewnętrznego. W dużych aglomeracjach miejskich i przemyslowych, pomieszczenia już coraz częściej muszą być klimatyzowane (lub wentylowane mechanicznie), z uwagi na znaczne zanieczyszczenie środowiska zewnętrznego. $W$ centrach dużych miast bowiem często nie sposöb dobrze pracować czy wypoczywać przy otwartych oknach ze względu na halas pochodzqcy z zewnatrz i zanieczyszczenie atmosfery.

Wplyw mikroklimatu na wydajność pracy
Wplyw komfortu cieplnego i halasu na wydajność pracy jest niepodwazalny. Sensownie zaprojektowane i skutecznie dzialajace urzqdzenie klimatyzacyjne, do tego stopnia oddziałuja na samopoczucie, iż w sposób wyraźnie widoczny wplywajq na większq efektywność pracy w drodze bezpośredniej, czyli przez wzrost wydajności pracy, a także w drodze pośredniej, tj. przez zmniejszenie ilości wyrobów wybrakowanych, przez zmniejszenie absencji chorobowej i fluktuacji kadr.
W wyniku zastosowania sprawnie dzialajqcych urzqdzeń klimatyzacyjnych w zakładach produkcyjnych przemyslu lekkiego, wydajność zwiększa się średnio o 27\% Natomiast w zakładach wlókienniczych, przy produkcji trykotaży nylonowych - jak podajq źródla amerykańskie [2] — wydajność wzrosła aż o $80 \%$.
Lawinowy rozwój techniki, czasów najnowszych, stworzyl swoisty produkt uboczny w postaci stale zwiększajq̣cej się ilości zanieczyszczeń atmosfery oraz liczby źródeł hałasu i ich poziomów. Tempo wzrostu zakłóceń przewyższa znacznie naturalna zdolność akomodacji żywych organizmów do zmieniajacych się warunków. W sposób istotny skażone zostalo środowisko biologiczne czlowieka.
Warto tu przytoczyć ciekawe wyniki badań czechosłowackiego ekonomisty dra Ziszka: Po odizolowaniu i wytlumieniu halasów w jednej spośród trzech hal fabrycznych, produkujacych ten sam asortyment części maszyn, już w ciqgu kilku miesięcy przeciętna produkcja w tej hali wzrosła o $28 \%$ w stosunku do pozostalych hal nieizolowanych akustycznie, a ilość zachorowań zmalała - $34 \%$.

Uczeni doszli zgodnie do ogólnego wniosku, ze hałas obniża średnio zdolność do pracy u pracowników fizycznych o $30 \%$, zaś u pracowników umyslowych aż o $60^{\circ} \%$.
Walka z halasem i ochrona przed hałasem jest przede wszystkim potwierdzeniem doceniania osobowości czlowieka, albowiem organizm ludzki domaga się złagodzenia napięcia nerwowego i odpoczynku tym bardziej, im bardziej żqda się od czlowieka skoncentrowania jego twórczych zdolności i wladz umyslowych do rozwiqzywania zagadnień wspólczesnego życia [3].

## Spoleczno-ekonomiczne aspekty optymalizacji mikroklimatu mieszkań

Rozumiejac istotny wplyw mikroklimatu, na wydajność na stanowisku pracy, czesto nie dostrzegamy lub nie doceniamy faktu, iż na większa efektywność pracy w sposób zasadniczy wplywaja warunki komfortu środowiska w okresie regeneracji organizmu, tj. w mieszkaniu. Skoro przeciętnie każdy czynny zawodowo człowiek spędza codziennie od 10 do 14 godzin zokresu regeneracji w domu, przeto stwarzanie optymalnych warunków mikroklimatu, w budownictwie mieszkaniowym, ze spolecznego punktu widzenia (zwiększona wydajność na stanowisku pracy, poprawa stanu zdrowotnego) należy uznać za w pełni uzasad-
nione. Już tylko te zagadnienia winny stymulować zamierzenia i dażność do optymalizacji mikroklimatu mieszkań.
Do podjęcia intensywnych starań o poprawe mikroklimatu, zwlaszcza w nowoczesnych mieszkaniach, zmusza zresztq także przyjęty wspólcześnie system budownictwa, tak bardzo odmienny warchitekturze i konstrukcji od dawnego. Dlatego też projektujac budynek, dziś coraz czę́siej trzeba sobie zadawać pytanie czy wystarcza wyposażyć go jedynie w urzqdzenia ogrzewcze, czy też niezbędne sq także urzadzenia wentylacyjne. A może urzadzenia wentylacyjne, umoz̀liwiajace perspektywicznie klimatyzowanie pomieszczeń?
Wypada przypomieć podstawowe fakty, zmuszajqce do takiego spojrzenia, na zagadnienie tworzenia mikroklimatu mieszkań: Podczas gdy dawniej stosowano powierzchnie okien nie przekraczajace $30 \%$ plaszczyzn zewnettrznych, to dziśs te wartości dochodza czasem do $75 \%$ i napływ promieniowania slonecznego jest znacznie wyższy. Dawne budynki posiadaly grube ściany zewnętrzne o dużej pojemności cieplnej i ciepło droga przewodzenia przedostawało się do wnętrza ze znacznym przesunięciem fazowym, sięgajacym np. dla ściany o grubości 30 do 40 cm około 8 do 12 godzin, zależnie od rodzaju muru. Wspólcześnie wznosi się budynki ze ścianami osłonowymi, wprawdzie o dobrym (niskim) współczynniku przenikania, jednakże ze znikomym przesunięciem fazowym. Okna coraz częściej wykonywane sq z aluminium lub tworzyw sztucznych i sq szczelne. Zewnętrzne przegrody budowlane (ściany osionowe) wykonane bywaja jako nieprzepuszczalne lub nieznacznie przepuszczalne dla powietrza. Nie uzyskuje się wtedy krotności wymiany powietrza, niezbędnej ze względów higienicznych, jeśli nie wykonać specjalnych otworów dla naplywu powietrza. Takie otwory naplywu, jeśli nie sq umieszczone nad grzejnikiem, sq przyczyna penetracji w pomieszczeniu strug powietrza chlodnego, stwarzajqcego złudzenie zjawiska przeciqgu. Pomieszczenie w części przyokiennej w zimie nie może być wtedy w pelni wykorzystywane i faktyczna powierzchnia uìytkowa jest mniejsza.

## Optymalizacja mikroklimatu a oszczędności energetyczne

W aspekcie ogólnoświatowego kryzysu energetycznego, należałoby także zastanowić się, czy optymalizujac mikroklimat wnętrz, nie można jednocześnie uzyskiwać pewnych oszczędności energetycznych. Takie stawianie zagadnienia wydaje się wręcz paradoksalne. Gdy jednak dobrze rozważyć, można stwierdzić, iż faktycznie istnieja takie możliwości, chociażby w wyniku bardziej powszechnego stosowania sufitowo-podłogowych, niskotemperaturowych ogrzewań przez promieniowanie, w miejsce ogrzewań z grzejnikami radiatorowymi. Wyniki wieloletnich badań prowadzonych na porównywalnych obiektach w Austrii oraz w Republice Federalnej Niemie [5], [6] wydaje się dostatecznie dobrze udowadniaja istnienie tych oszczędności energetycznych sieggajqcych ok. $20 \%$. Sa to oszczędności znaczne, gdy
wziqć pod uwage, iż zużycie ciepla na cele ogrzewania i wentylacji, w budownictwie mieszkaniowym, stanowi ponad jednq trzeciq calkowitego zużycia energii w uprzemysłowionych krajach naszej strefy klimatycznej, z tendencja rosnqca.
Trzeba wszakże zdawać sobie sprawę $z$ wielkich zawsze trudności wykonawczych przy stosowaniu sufito-podłogowych ogrzewań wodnych, zwlaszcza tych z rurami wtopionymi w betonowe stropy. Wymagana duża trwalość, a stąd dokładność i niezawodność wykonawstwa, nie sprzyja powszechnemu stosowaniu tego rozwiqzania, chyba ze realizacje podejmuja wysoce wyspecjalizowane firmy.
Uzyskuje się także innego typu oszczędności energetyczne, dzięki wprzęgnięciu w proces ogrzewania, najbardziej dziś masywnego elementu konstrukcji budynku - stropu. Ogrzewanie przejmuje bowiem wtedy cechy ogrzewań akumulacyjnych i pozwala na bardziej swobodne bilansowanie dostawy ciepla w skali doby. Umożliwia przeto obcięcie tzw. szczytów energetycznych.

## Glówna idea i koncepcja rozwiqzania

W aspekcie takich rozważań, majqc na wzgledzie optymalizację mikroklimatu wnętrz w nowoczesnym budownictwie mieszkaniowym, przy jednoczesnym nawiewie powietrza do pomieszczeń w ilościach niezbędnych, ze względów higienicznych, a także:

- taniq możliwość wychladzania pomieszczeń w lecie
- skrócenie cyklu budowy domu w wyniku większej prefabrykacji
- zaoszczędzenie żeliwa, rur i metali kolorowych
- wyeliminowanie z mieszkań, klopotliwego zawsze, czynnika grzejnego, jakim jest woda
- a ponadto i zwlaszcza możliwość etapowej realizacji poprawy mikroklimatu wnettrz mieszkalnych, stosownie do aktualnych możliwości techniczno-ekonomicznych i wymaganego standardu, powstaka koncepcja opracowania zintegrowanego systemu plaszczyznowego ogrzewania sufi-to-podlogowego (z powietrzem jako czynnikiem grzejnym), z nawiewna wentylacja mechaniczna i możliwościa klimatyzacji, przy jednoczesnym wychładzaniu pomieszczeń w okresie letnim, w zastosowaniu do budynków realizowanych metoda uprzemysłowionq. Opracowanie chronione jest zgloszeniem patentowym [7].

Ogólna idea rozwiqzania jest nasteppujqca: Z centrali nawiewnej, przez konstrukcyjne plyty ścienne zasilajq̣ce, dzięki właściwemu odchyleniu kanalów od pionu, na poszczególne kondygnacje budynku, zostaje doprowadzone powietrze odpowiednio uzdatnione (wentylujace lub klimatyzu-
jqce), zawsze w strefe podokiennq, do nawiewników przypodlogowych. W okresie zimowym, z centrali ogrzewczej, przez (rozmieszczane naprzemiennie z wentylacyjnymi) kanaly ogrzewcze do wielootworowych, petlowych plyt stropowych, doprowadzane jest gorqce powietrze, które tam oddajac znacznq część swego ciepla, wraca kanałami ściennymi plyt powrotnych do tej centrali. W okresie letnim, można istniejqcy bezwladnościowy uklad pósredniego ogrzewania powietrznego w latwy sposób wykorzystać dla celów wychladzania powietrzem zewnętrznym w okresie nocnym, stosujac dodatkowo jedynie czerpnie i wyrzutnie. Masywne stropy wielootworowe sq wtedy pojemnymi akumulatorami chlodu. Poczynione badania na stanowisku [8], wykazaly pelna realność wykorzystania, dla celów plaszczyznowego ogrzewania ( $z$ powietrzem jako czynnikiem grzejnym), powszechnie stosowanych w budownictwie stropowych plyt wielootworowych W-70 lub typu Żerań. Także ze względu na ochrone przeciwdźwiękowa, bardziej celowe jest stosowanie stropów wielootworowych niż pelnych, np. typu WK. Układ dwupętlowy wystarcza dla porycia zapotrzebowania ciepla na kondygnacjach pośrednich i na parterze. Szczegółowe pomiary spadków ciśnienia przeplywu powietrza, w standardowych plytach stropowych i kanalach betonowych, przeprowadzone przy wymaganych predkościach, utwierdzity w przekonaniu, że opory przeplywu, z uwagi na swe znikome wartości, nie sq znaczqcymi w calości oporów instalacji grzejnej.
Istnieje potrzeba realizacji obiektu eksperymentalnego dla przekonania się o słuszności przedstawionych idei rozwiqźania, dla stwierdzenia możliwości wyraźnej poprawy mikroklimatu wnętrz, przy jednoczesnych oszczędnościach w zużyciu ciepla na cele ogrzewcze.

## LITERATURA

1. ZB. JETHON: Bariery ludzkich możliwości. Wiedza Powszechna, Warszawa 1977.
2. M. MALICKI: Wentylacja i Klimatyzacja. Arkady, Warszawa 1977.
3. G. BESLER i inni: Podstawy ochrony środowiska. Politechnika Wrocławska, Wroclaw 1976.
4. G. BESLER: Oszczędność energii przy równoczesnej poprawie mikroklimatu wnętrz mieszkalnych. Konferencja nt. „Oszczędność paliw w cieplownictwie mieszkanioniowym i przemyslowym. OW NOT Wroclaw 1977.
5. S. POLAN: Vergleichende Untersuchungen über den Wörmeverbrauch von Radiater - und Deckenstrehlungs - Heizungen. HLH 16/1965/11.
6. H. REIHER, T. SCHULTHEIS: Einsparung von Heizenenergie bei niederstemperierten Flächenheizungen. HLH 25/1974/6.
7. G. BESLER: Budynek a konstrukcji wielkoplytowej z pośrednim agrzewaniem powietrznym i wentylacja lub klimalyzacjq. Zgloszenie patentowe P-19373: do Urzedu Patentowego PRL, Warszawa 1976.
8. Praca zbiorowa: Pośrednie ogrzewanie powietrzne z klimatyzacjq. Raport 6/78 Instytutu Inżynierii Chemicznej i Urzadzeń Cieplnych Politechniki Wroclawskiej, Wroclaw 1978.
